mirror of
https://gitlab.com/upRootNutrition/obsidian.git
synced 2025-06-15 15:45:11 -05:00
127 lines
No EOL
10 KiB
Markdown
Executable file
127 lines
No EOL
10 KiB
Markdown
Executable file
## Operators & Symbols
|
||
|
||
| <font color="CC6600">**Symbol**</font> | <font color="CC6600">**Operation**</font> | <font color="CC6600">**Example**</font> | <font color="CC6600">**Description**</font> |
|
||
|:--------------------------------------:|:-----------------------------------------:|:---------------------------------------:|:-------------------------------------------------------------------------------------------------------- |
|
||
| → | Implies | P→Q | A proposition that is only false if Q is false. |
|
||
| ↔ | Biconditional | P↔Q | A proposition that denotes logic equivalence, and is true when both predicates are either true or false. |
|
||
| ¬ | Negation | ¬P | A proposition that is true if and only if P is false. |
|
||
| ∧ | Conjunction | P∧Q | A proposition that is true if and only if both P and Q are true. |
|
||
| ∨ | Disjunction | P∨Q | A proposition that is false if and only if both P and Q are false. |
|
||
| ⊻ | Exclusive Or | P⊻Q | A proposition that is true if and only if either only P or only Q are true. |
|
||
| ∀ | Universal Quantifier | ∀x(Px) | A proposition that states that for all x, P is true. |
|
||
| ∃ | Existential Quantifier | ∃x(Px) | A proposition that states that there is at least one X, such that P(x) is true. |
|
||
| ∴ | Therefore | ∴Q | The conclusion of a syllogism |
|
||
| := | Definition | P:=grass is green | A general symbol used for defining propositions. |
|
||
| () | Parentheses | (P∧Q) | A means of grouping propositions together. |
|
||
|
||
|
||
|
||
# Logical Necessity
|
||
|
||
### Tautology
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**True**</font> |
|
||
| --------------------------------- | ------------------------------------ |
|
||
| T | T |
|
||
| F | T |
|
||
|
||
# Logical Impossibility
|
||
|
||
### Contradiction
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**¬P**</font> | <font color="CC6600">**P∧¬P**</font> |
|
||
|:---------------------------------:|:----------------------------------:|:------------------------------------ |
|
||
| T | F | F |
|
||
| F | T | F |
|
||
|
||
# Logical Possibility
|
||
|
||
### Implication (P→Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | T |
|
||
| T | F | F |
|
||
| F | T | T |
|
||
| F | F | T |
|
||
|
||
### Biconditional (P↔Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P↔Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | T |
|
||
| T | F | F |
|
||
| F | T | F |
|
||
| F | F | T |
|
||
|
||
### Conjunction (P∧Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P∧Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | T |
|
||
| T | F | F |
|
||
| F | T | F |
|
||
| F | F | F | F | T | F |
|
||
|
||
|
||
### Disjunction (P∨Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P∨Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | T |
|
||
| T | F | T |
|
||
| F | T | T |
|
||
| F | F | F |
|
||
|
||
### Exclusive Disjunction (P⊻Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P⊻Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | F |
|
||
| T | F | T |
|
||
| F | T | T |
|
||
| F | F | F |
|
||
|
||
# Esoteric Logical Possibility
|
||
|
||
### Not And (P⊼Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P⊼Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | F |
|
||
| T | F | T |
|
||
| F | T | T |
|
||
| F | F | T |
|
||
|
||
### Not Or (P⊽Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | F |
|
||
| T | F | F |
|
||
| F | T | F |
|
||
| F | F | T |
|
||
|
||
### Material Nonimplication (P↛Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | F |
|
||
| T | F | T |
|
||
| F | T | F |
|
||
| F | F | F |
|
||
|
||
### Converse Nonimplication (P↚Q)
|
||
|
||
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|
||
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
|
||
| T | T | F |
|
||
| T | F | F |
|
||
| F | T | T |
|
||
| F | F | F |
|
||
|
||
# Hashtags
|
||
|
||
#coursework
|
||
#logic_course
|
||
#propositional_logic |