obsidian/🛡️ Debate/📚 Coaching/📖 Coursework/Propositional Logic Intro.md
2024-09-22 00:18:44 -05:00

127 lines
No EOL
10 KiB
Markdown
Executable file
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## Operators & Symbols
| <font color="CC6600">**Symbol**</font> | <font color="CC6600">**Operation**</font> | <font color="CC6600">**Example**</font> | <font color="CC6600">**Description**</font> |
|:--------------------------------------:|:-----------------------------------------:|:---------------------------------------:|:-------------------------------------------------------------------------------------------------------- |
| → | Implies | P→Q | A proposition that is only false if Q is false. |
| ↔ | Biconditional | P↔Q | A proposition that denotes logic equivalence, and is true when both predicates are either true or false. |
| ¬ | Negation | ¬P | A proposition that is true if and only if P is false. |
| ∧ | Conjunction | P∧Q | A proposition that is true if and only if both P and Q are true. |
| | Disjunction | PQ | A proposition that is false if and only if both P and Q are false. |
| ⊻ | Exclusive Or | P⊻Q | A proposition that is true if and only if either only P or only Q are true. |
| ∀ | Universal Quantifier | ∀x(Px) | A proposition that states that for all x, P is true. |
| ∃ | Existential Quantifier | ∃x(Px) | A proposition that states that there is at least one X, such that P(x) is true. |
| ∴ | Therefore | ∴Q | The conclusion of a syllogism |
| := | Definition | P:=grass is green | A general symbol used for defining propositions. |
| () | Parentheses | (P∧Q) | A means of grouping propositions together. |
# Logical Necessity
### Tautology
| <font color="CC6600">**P**</font> | <font color="CC6600">**True**</font> |
| --------------------------------- | ------------------------------------ |
| T | T |
| F | T |
# Logical Impossibility
### Contradiction
| <font color="CC6600">**P**</font> | <font color="CC6600">**¬P**</font> | <font color="CC6600">**P∧¬P**</font> |
|:---------------------------------:|:----------------------------------:|:------------------------------------ |
| T | F | F |
| F | T | F |
# Logical Possibility
### Implication (P→Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | T |
| T | F | F |
| F | T | T |
| F | F | T |
### Biconditional (P↔Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P↔Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | T |
### Conjunction (P∧Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P∧Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | T |
| T | F | F |
| F | T | F |
| F | F | F | F | T | F |
### Disjunction (PQ)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**PQ**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | T |
| T | F | T |
| F | T | T |
| F | F | F |
### Exclusive Disjunction (P⊻Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P⊻Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | F |
# Esoteric Logical Possibility
### Not And (P⊼Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P⊼Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | F |
| T | F | T |
| F | T | T |
| F | F | T |
### Not Or (P⊽Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | F |
| T | F | F |
| F | T | F |
| F | F | T |
### Material Nonimplication (P↛Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | F |
| T | F | T |
| F | T | F |
| F | F | F |
### Converse Nonimplication (P↚Q)
| <font color="CC6600">**P**</font> | <font color="CC6600">**Q**</font> | <font color="CC6600">**P→Q**</font> |
|:---------------------------------:|:---------------------------------:|:----------------------------------- |
| T | T | F |
| T | F | F |
| F | T | T |
| F | F | F |
# Hashtags
#coursework
#logic_course
#propositional_logic