## Operators & Symbols | **Symbol** | **Operation** | **Example** | **Description** | |:--------------------------------------:|:-----------------------------------------:|:---------------------------------------:|:-------------------------------------------------------------------------------------------------------- | | → | Implies | P→Q | A proposition that is only false if Q is false. | | ↔ | Biconditional | P↔Q | A proposition that denotes logic equivalence, and is true when both predicates are either true or false. | | ¬ | Negation | ¬P | A proposition that is true if and only if P is false. | | ∧ | Conjunction | P∧Q | A proposition that is true if and only if both P and Q are true. | | ∨ | Disjunction | P∨Q | A proposition that is false if and only if both P and Q are false. | | ⊻ | Exclusive Or | P⊻Q | A proposition that is true if and only if either only P or only Q are true. | | ∀ | Universal Quantifier | ∀x(Px) | A proposition that states that for all x, P is true. | | ∃ | Existential Quantifier | ∃x(Px) | A proposition that states that there is at least one X, such that P(x) is true. | | ∴ | Therefore | ∴Q | The conclusion of a syllogism | | := | Definition | P:=grass is green | A general symbol used for defining propositions. | | () | Parentheses | (P∧Q) | A means of grouping propositions together. | # Logical Necessity ### Tautology | **P** | **True** | | --------------------------------- | ------------------------------------ | | T | T | | F | T | # Logical Impossibility ### Contradiction | **P** | **¬P** | **P∧¬P** | |:---------------------------------:|:----------------------------------:|:------------------------------------ | | T | F | F | | F | T | F | # Logical Possibility ### Implication (P→Q) | **P** | **Q** | **P→Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | T | | T | F | F | | F | T | T | | F | F | T | ### Biconditional (P↔Q) | **P** | **Q** | **P↔Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | T | | T | F | F | | F | T | F | | F | F | T | ### Conjunction (P∧Q) | **P** | **Q** | **P∧Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | T | | T | F | F | | F | T | F | | F | F | F | F | T | F | ### Disjunction (P∨Q) | **P** | **Q** | **P∨Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | T | | T | F | T | | F | T | T | | F | F | F | ### Exclusive Disjunction (P⊻Q) | **P** | **Q** | **P⊻Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | F | | T | F | T | | F | T | T | | F | F | F | # Esoteric Logical Possibility ### Not And (P⊼Q) | **P** | **Q** | **P⊼Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | F | | T | F | T | | F | T | T | | F | F | T | ### Not Or (P⊽Q) | **P** | **Q** | **P→Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | F | | T | F | F | | F | T | F | | F | F | T | ### Material Nonimplication (P↛Q) | **P** | **Q** | **P→Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | F | | T | F | T | | F | T | F | | F | F | F | ### Converse Nonimplication (P↚Q) | **P** | **Q** | **P→Q** | |:---------------------------------:|:---------------------------------:|:----------------------------------- | | T | T | F | | T | F | F | | F | T | T | | F | F | F | # Hashtags #coursework #logic_course #propositional_logic