Carson et al Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

## **Supplementary Material**

## Methods for meta-regression analysis

#### Eligibility criteria

The aim was to examine the independent effect of a change in dietary cholesterol intake on lipids and lipoproteins by conducting a meta-regression analysis of data from controlled feeding studies including adults where the PUFA to saturated fat ratio (P:S) was matched in the referent and intervention arms. Studies were eligible for inclusion if a cross over or parallel controlled feeding design was used, whereby subjects were provided with a complete menu for the duration of the study. In addition, dietary cholesterol intake was the only difference between the treatment and control groups in the included studies. The reported data had to enable comparison of the effect of dietary cholesterol intake at differing levels while the P:S was held constant. And dietary cholesterol had to be reported in mg/day or a manner that enabled calculation of mg/day. Finally, eligible studies included adults ( $\geq$ 18 years), and reported outcomes included either total cholesterol, LDL-cholesterol or HDL –cholesterol.

Studies were not eligible for inclusion if there was no control or referent condition, or there was a difference in the P:S ratio of the control/referent condition vs. the intervention period/arm. In addition, studies where a concomitant intervention (e.g. weight loss or other dietary interventions, drugs or supplements) was administered were ineligible. Studies where only partial provision of food items or total daily caloric intake occurred were excluded.

Search strategy

Tables S3-5 summarize the search strategies that were used to search Medline (Ovid), CINAHL, and the Cochrane Library since the year of index for each database through October 16, 2018.

#### Table S3: Search strategy used for Medline (Ovid)

| 1. cholesterol, dietary/ OR cholesterol intake.mp. OR exp dietary fats               |  |  |  |  |
|--------------------------------------------------------------------------------------|--|--|--|--|
| 2. exp eggs                                                                          |  |  |  |  |
| 3. exp meat OR exp seafood OR exp poultry                                            |  |  |  |  |
| 4. 1 OR 2 OR 3                                                                       |  |  |  |  |
| 5. cholesterol, LDL/ OR cholesterol, HDL/ OR cholesterol/                            |  |  |  |  |
| 6. 4 and 5                                                                           |  |  |  |  |
| 7. limit 6 (English language; human; clinical trial, all; all adult (19 plus years)) |  |  |  |  |

## Table S4: Search strategy used for CINAHL

| 1. TX "dietary cholesterol" OR TX "cholesterol intake" OR TX "Dietary f | fats" |
|-------------------------------------------------------------------------|-------|
|-------------------------------------------------------------------------|-------|

2. TX eggs

3. TX meat OR TX seafood OR TX poultry

4. S1 OR S2 OR S3

Carson et al

Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

| 5. TX "LDL cholesterol" OR TX "HDL cholesterol" OR TX cholesterol     |
|-----------------------------------------------------------------------|
| 6. 4 and 5                                                            |
| 7. 6 limit to academic journal, adult: 19-44 years, English language) |

## Table S5: Search strategy used for the Cochrane Library

| 1. ("dietary cholesterol"):kw OR ("cholesterol intake"):ti,ab,kw OR ("dietary |
|-------------------------------------------------------------------------------|
| fats"):ti,ab,kw                                                               |
| 2. eggs                                                                       |
| 3. (meat):kw OR (seafood):kw OR (poultry):kw                                  |
| 4. #1 or #2 or #3                                                             |
| 5. ("LDL cholesterol"):kw OR ("HDL cholesterol"):kw OR (cholesterol):kw       |
| 6. #4 and #5                                                                  |
|                                                                               |
|                                                                               |

# Study Selection

Figure S1 summarizes the number of studies that were identified by the database search, screened for eligibility, reasons for exclusion, and the total number of studies eligible for inclusion in the meta-regression analysis.

Carson et al Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

Records identified through Additional records identified database searching through other sources (n = 3460)(n = 1) Identification Medline (n = 1376) CINAHL (n= 741) Cochrane Library (n = 1343) Records after duplicates removed (n = 2437)Screening **Records screened Records excluded** (n = 2437)(n = 2390)Full-text articles assessed Full-text articles excluded. with reasons for eligibility Eligibility (n = 47)(n = 36)Not a controlled feeding study (n = 21)Study duration < 4 weeks Studies included in (n = 5)qualitative synthesis PUFA: SFA not matched (n = 11)between treatment and control periods (n = 6)Dietary cholesterol content not reported in Included mg/day (n = 1)Studies included in Concomitant intervention quantitative synthesis (n = 2)(meta-regression analysis) Outcome of interest not (n = 11)reported (n = 1)

Figure S1: PRISMA flow diagram

### Carson et al

Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

## Data extraction

Extracted data were entered into a standardized spreadsheet. The following items were extracted: study design (parallel; crossover); number of subjects included in analyses; dietary cholesterol intake in the control/referent condition, and intervention condition; for each outcome measure: mean (or median) and variance, or change from baseline and variance for the intervention and control condition, or the effect size; P:S ratio; presence of hypercholesterolemia (> 200 mg/dl); presence of diabetes.

## Data analysis

For cross-over studies, the mean difference in dietary cholesterol intake between the intervention period and the referent/ control period was used for analysis. In the case of more than two levels of intake, the arm with the lowest dietary cholesterol intake was used as the comparator. Blood cholesterol response was defined as the difference between the mean value at the end of the intervention period and the mean value during the referent/control period. Where this was not reported, the within-treatment change from baseline values were used to calculate the between treatment difference. If data were not reported in the required format transformations were made as follows:

 $\frac{\text{Within treatment}}{\text{SD} = \text{SE x } \sqrt{n}}$ 

<u>Between-treatment</u> Mean difference = Mean intervention – Mean referent

SD of the mean difference =  $\sqrt{SD_{intervention}^2 + SD_{referent}^2} - (2 \times corr \times SD_{intervention} + SD_{referent})$ 

Correlation was imputed as 0.5 if it could not be derived from the data presented.

SE of the mean difference = SD mean difference /  $\sqrt{N}$ 

For parallel studies, the within-treatment change in dietary cholesterol intake from baseline was used to calculate the between treatment difference. Similarly, within-treatment change in blood cholesterol was used to calculate the between treatment difference. If data were not reported in the required format transformations were made as follows:

 $\frac{\text{Within group}}{\text{SD} = \text{SE x } \sqrt{n}}$ 

Within group change from baseline = mean post intervention - mean pre intervention

SD of the within group change from baseline =  $\sqrt{SD_{baseline}^2 + SD_{post}^2} - (2 \text{ x corr x SD}_{baseline} + SD_{post})$ 

Copyright ©2019 American Heart Association, Inc.

#### Carson et al

Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

Correlation was imputed as 0.5 if it could not be derived from the data presented.

#### Between -group

Mean difference = Mean intervention - Mean referent

SE for the between –group mean difference computed using the metan command in Stata

If outcome measurements occurred at a number of time points the longest duration from baseline was used for analysis. In addition, if follow-up occurred after a period since the active intervention ended, data from end of the active phase were used for analysis.

Meta-regression analyses were conducted using STATA 15.1 (Stata Corp, College Station, Texas, USA). Random-effect models were used due to the between-study heterogeneity present and generated using the metareg command. The presence of a log-linear association between LDL-cholesterol and dietary cholesterol was explored by regressing the natural logarithm of LDL-cholesterol (and the standard error) against dietary cholesterol using metareg. Between study variance was estimated by the residual (restricted) maximum likelihood (REML) method with Knapp- Hartung modification. The analyses were repeated with each individual study removed from the model to assess the impact of each included study. P-values <0.05 were considered statistically significant.

|                                                                                  | Total C | holesterol                              | LDI | -cholesterol                      | HDL | -cholesterol                      |
|----------------------------------------------------------------------------------|---------|-----------------------------------------|-----|-----------------------------------|-----|-----------------------------------|
|                                                                                  | n       | Coefficient                             | n   | Coefficient                       | n   | Coefficient                       |
| All studies                                                                      | 25      | 0.016<br>(0.002,<br>0.03)<br>p=0.024    | 19  | 0.007 (-0.008,<br>0.022) p=0.335  | 16  | 0.005 (-0.0004,<br>0.011) p=0.064 |
| Crossover<br>studies<br>only                                                     | 19      | 0.018<br>(0.004,<br>0.031)<br>p=0.014   | 15  | 0.009 (-0.005,<br>0.023) p=0.179  | 12  | 0.003 (-0.005,<br>0.011) p=0.42   |
| Parallel<br>studies<br>only                                                      | 6       | 0.012 (-<br>0.033,<br>0.057)<br>p=0.560 | 4   | 0.001 (-0.070,<br>0.072) p=0.942  | 4   | 0.009 (-0.013,<br>0.030) p=0.22   |
| All studies<br>with<br>change in<br>dietary<br>cholesterol<br>≤ 300<br>mg/day    | 7       | 0.0009 (-<br>0.074,<br>0.076)<br>p=0.98 | 7   | -0.006 (-0.078,<br>0.065) p=0.883 | 6   | 0.003 (-0.038,<br>0.044) p=0.84   |
| All studies<br>with<br>change in<br>dietary<br>cholesterol<br>> 300<br>mg/day    | 18      | 0.005 (-<br>0.015,<br>0.025)<br>p=0.63  | 12  | -0.005 (-0.027,<br>0.017) p=0.63  | 10  | 0.008 (-0.001,<br>0.017) p=0.075  |
| All studies<br>with a<br>change in<br>dietary<br>cholesterol<br>< 1000<br>mg/day | 23      | 0.017<br>(0.001,<br>0.032)<br>p=0.036   | 17  | 0.007 (-0.011,<br>0.026) p=0.428  | 14  | 0.004 (-0.004,<br>0.012) p=0.294  |

# Table S6: Sub-group meta-regression analyses by study design and cut-offs for changes in dietary cholesterol intake

# Table S7: Leave-one-out sensitivity analysis for total cholesterol

|                          | Total Cholesterol |                                |  |
|--------------------------|-------------------|--------------------------------|--|
|                          | n                 | Coefficient                    |  |
| All studies linear model | 25                | 0.016 (0.002, 0.03) p=0.024    |  |
| Remove: Chenoweth 1981   | 23                | 0.016 (0.001, 0.030) p=0.035   |  |
| Remove: Ginsberg 1995    | 23                | 0.015 (-0.0007, 0.031) p=0.061 |  |
| Remove: Ginsberg 1994    | 22                | 0.017 (0.0008, 0.033) p=0.040  |  |

Copyright ©2019 American Heart Association, Inc.

Carson et al Dietary Cholesterol and Cardiovascular Risk: A Science Advisory from the American Heart Association Data Supplement 3

| Remove: Illingworth 1995 | 19 | 0.015 (-0.0004, 0.031) p=0.056 |
|--------------------------|----|--------------------------------|
| Remove: Johnson 1990     | 24 | 0.016 (0.002, 0.030) p=0.027   |
| Remove: Reaven 2001      | 22 | 0.022 (0.006, 0.037) p=0.008   |
| Remove: Connor 1964      | 23 | 0.012 (-0.002, 0.027) p=0.082  |
| Remove: Bowman 1988      | 23 | 0.017 (0.005, 0.030) p=0.009   |
| Remove: Fielding 1995    | 23 | 0.016 (0.002, 0.030) p=0.023   |
| Remove: Flaim 1981       | 24 | 0.017 (0.002, 0.032) p=0.024   |
| Remove Quig 1983         | 24 | 0.016 (0.001, 0.030) p=0.035   |

## Table S8: Leave-one-out sensitivity analysis for HDL-cholesterol

|                          | HDL-cholesterol |                                |  |
|--------------------------|-----------------|--------------------------------|--|
|                          | n               | Coefficient                    |  |
| All studies linear model | 16              | 0.005 (-0.0004, 0.011) p=0.064 |  |
| Remove: Ginsberg 1995    | 14              | 0.006 (-0.0004, 0.012) p=0.065 |  |
| Remove: Ginsberg 1994    | 13              | 0.007 (-0.0009, 0.014) p=0.079 |  |
| Remove: Illingworth 1995 | 10              | 0.006 (-0.0008, 0.012) p=0.079 |  |
| Remove: Johnson 1990     | 15              | 0.005 (-0.0004, 0.012) p=0.065 |  |
| Remove: Bowman 1988      | 14              | 0.005 (-0.001, 0.011) p=0.119  |  |
| Remove: Flaim 1981       | 15              | 0.007 (0.0006, 0.013) p=0.035  |  |
| Remove Quig 1983         | 15              | 0.003 (-0.004, 0.011) p=0.44   |  |

|                          | LDL-cholesterol |                               |  |
|--------------------------|-----------------|-------------------------------|--|
|                          | n               | Coefficient                   |  |
| All studies linear model | 19              | 0.007 (-0.008, 0.022) p=0.335 |  |
| Remove: Ginsberg 1995    | 17              | 0.005 (-0.011, 0.022) p=0.493 |  |
| Remove: Ginsberg 1994    | 16              | 0.007 (-0.011, 0.025) p=0.419 |  |
| Remove: Illingworth 1995 | 13              | 0.004 (-0.013, 0.022) p=0.572 |  |
| Remove: Johnson 1990     | 18              | 0.007 (-0.008, 0.022) p=0.339 |  |
| Remove: Reaven 2001      | 16              | 0.01 (-0.007, 0.028) p=0.221  |  |
| Remove: Bowman 1988      | 17              | 0.009 (-0.003, 0.021) p=0.123 |  |
| Remove: Flaim 1981       | 18              | 0.007 (-0.009, 0.023) p=0.359 |  |
| Remove Quig 1983         | 18              | -0.007 (-0.010, 0.02) p=0.394 |  |