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ABSTRACT 
To date, nutritional epidemiology has relied heavily on relatively weak methods including simple 
observational designs and substandard measurements. Despite low internal validity and other 
sources of bias, claims of causality are made commonly in this literature. Nutritional epidemiology 
investigations can be improved through greater scientific rigor and adherence to scientific reporting 
commensurate with research methods used. Some commentators advocate jettisoning nutritional 
epidemiology entirely, perhaps believing improvements are impossible. Still others support only 
normative refinements. But neither abolition nor minor tweaks are appropriate. Nutritional 
epidemiology, in its present state, offers utility, yet also needs marked, reformational renovation. 
Changing the status quo will require ongoing, unflinching scrutiny of research questions, practices, 
and reporting—and a willingness to admit that “good enough” is no longer good enough. As 
such, a workshop entitled “Toward more rigorous and informative nutritional epidemiology: the 
rational space between dismissal and defense of the status quo” was held from July 15 to August 
14, 2020. This virtual symposium focused on: (1) Stronger Designs, (2) Stronger Measurement, (3) 
Stronger Analyses, and (4) Stronger execution and Reporting. Participants from several leading 
academic institutions explored existing, evolving, and new better practices, tools, and techniques 
to collaboratively advance specific recommendations for strengthening nutritional epidemiology.

Main text introduction 

Introduction

Nutritional epidemiology has been characterized by some 
critics in extreme terms as absurd, corrupt, and even a dead 
science. In Science Fictions: How Fraud, Bias, Negligence, and 
Hype Undermine the Search for Truth, Stuart Ritchie 
(2020) noted:

Fads like microbiome mania wax and wane, but there’s one 
field of research that consistently generates more hype, inspires 
more media interest and suffers more from the deficiencies 
outlined in this book than any other. It is, of course, nutrition.  
The media has a ravenous appetite for its supposed findings: 

‘The Scary New Science That Shows Milk is Bad for You’; ‘Killer 
Full English: Bacon Ups Cancer Risk’; ‘New Study Finds Eggs 
Will Break Your Heart’. Given the sheer volume of coverage, 
and the number of conflicting assertions about how we should 
change our diets, little wonder the public are confused about 
what they should be eating. After years of exaggerated findings, 
the public now lacks confidence and is sceptical of the field’s 
research. (Ritchie 2020)

Such skepticism is not relegated to the public. Via a 
commentary in The BMJ, Nina Teicholz and Gary Taubes 
(2018) maintained:

Despite methodological advances, nutritional epidemiology 
remains fundamentally limited by its observational nature. 
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Guidelines relying on the circumstantial evidence can be a lit-
tle more than educated guesses. (Teicholz and Taubes 2018)

Some academicians even suggest abolishing nutritional 
epidemiology. As Scott Lear, a professor of Health Sciences 
at Simon Fraser University, posited, “One may wonder if 
we should stop nutritional research altogether until we can 
get it right” (Lear 2019). John P.A. Ioannidis stated, 
“Nutrition epidemiology is a field that’s grown old and died. 
At some point, we need to bury the corpse and move on 
to a more open, transparent sharing and controlled exper-
imental way” (Belluz 2018).

But the field—and the status quo—also has its defenders. 
Ambika Satija and colleagues asserted in Advances in 
Nutrition (Satija et al. 2015):

Nutritional epidemiology has recently been criticized on several 
fronts, including the inability to measure diet accurately, and 
for its reliance on observational studies to address etiologic 
questions.… These criticisms, to a large degree, stem from a mis-
understanding of the methodologic issues.… Misunderstanding 
these issues can lead to the non-constructive and sometimes 
naïve criticisms we see today. (Satija et al. 2015)

Rightly or wrongly, nutritional epidemiology’s research 
findings have played a large role in shaping how we perceive 
relationships between food or nutrients and disease and how 
national policy guidelines are determined. These research 
findings also shape public opinion and affect public health. 
But nutritional epidemiology’s research outcomes are all too 
often derived by study modalities that yield only low-level 
evidence.

Despite limitations in the study designs commonly used—
not to mention poor executions of analyses and misreporting 
of subsequent results—researchers often make claims of 
causality when reporting nutritional associations (Cofield, 
Corona, and Allison 2010). In particular, the discipline has 
relied heavily on simple observational studies and 
meta-analyses of these simple observational studies. But 
these ordinary association tests alone cannot determine cau-
sality. At best, simple observational studies may, as part of 
a larger body of evidence, result in collective evidence of 
causation sufficient for some standards (Hill 1965).

Moreover, current methods of measuring dietary intake, 
food composition, and environmental “exposome” covariates 
arguably fall short of both the accuracy and the precision 
necessary to confidently detect causal risk relationships or 
their magnitude, and do not meet the standards of quality 
often held in other research domains (Schoeller and 
Westerterp 2017; Patel and Ioannidis 2014).

Nutritional epidemiology can—and must—do better by 
pursuing greater scientific rigor, academic honesty, and intel-
lectual integrity. And the time is right to do so. Some aca-
demicians, believing such change is impossible, wish to 
jettison the tools upon which nutritional epidemiologists 
historically have relied. Still others advocate for only nor-
mative refinements. But neither abolition nor minor tweaks 
are appropriate. Nutritional epidemiology, in its present state, 
offers utility and substantial room for improvement. To 
change the status quo will require an ongoing, collective 
examination of nutritional epidemiology’s research questions, 

practices, and reporting—and a willingness to admit that 
“good enough” is no longer good enough.

In the spirit of strengthening the field of nutritional epi-
demiology, an online event, “Toward more rigorous and 
informative nutritional epidemiology: the rational space 
between dismissal and defense of the status quo,” was held 
from July 15 to August 14, 2020. The symposium comprised 
15 prepared research talks, several moderated panel discus-
sions, and small-group, open-forum sessions related to the 
need for reforms in four areas of focus: (1) Stronger Designs, 
(2) Stronger Measurement, (3) Stronger Analyses, and (4) 
Stronger Execution and Reporting.

Invited participants from several leading academic insti-
tutions explored new best practices, tools, and techniques 
to strengthen the nutritional epidemiology field. Following 
small-group discussions, the working groups presented their 
findings, considered the various perspectives offered, and 
then collaboratively worked through specific recommenda-
tions. For each of the four focus areas, we first summarize 
the recommendations that resulted from the prepared talks 
and discussions. We then summarize and expand on the 
content of the prepared talks and discussions. Finally, we 
provide some concluding comments.

Points considered

Stronger designs

Recommendations

• Begin with the research question to be answered, 
consider which measurements could most effectively 
answer this question, and develop a study design 
best-suited to delivering these data. Researchers 
can strengthen the quality of observational research 
by expanding study design options beyond tradi-
tional observational methods or by combining tra-
ditional observational methods with more objective 
measurements.

• First consider what a design can and cannot accom-
plish (to the extent this is known). Such consider-
ation is essential for understanding a study design’s 
strengths and limitations and systematically address-
ing any assumptions and limitations, such as through 
sensitivity analyses, falsification tests, or constraints 
on conclusions.

• Designs exist both for generalizability of results and 
for making inferences to a specific individual (e.g., 
pragmatic trials versus repeated N-of-1 trials, respec-
tively), and investigators should be precise about the 
population or individual to which inferences are 
appropriately made.

• Before declaring a randomized trial to be impossible, 
impractical, or unethical, researchers should thor-
oughly review all available options. Myriad design 
options are employed across academic disciplines, 
including conventional trials, unconventional trials, 
and emerging approaches. Creative solutions may 
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make a randomized design possible, practical, and 
ethical, thereby adding stronger causal inference to 
some nutritional epidemiological questions.

Discussion summary
Beyond the dichotomy of ordinary association tests versus 
randomization.  Much of the nutritional epidemiological 
literature has relied on simple observational studies – 
specifically ordinary association tests (OATs) These have 
been defined as:

Observational studies on samples of individuals in which the 
sole or primary means of controlling for potential confounding 
factors is inclusion of measures of some potential confounding 
factors as covariates in statistical models (or stratifying by mea-
sures of such factors). OATs are heavily relied upon in thinking 
about plausible effects of policies, but have also been heavily 
criticized in general and in the obesity and nutrition domains 
in particular for multiple reasons. (Richardson et al. 2017)

The limitations of OATs as a means of reliably determin-
ing causation are well established (Jepsen et al. 2004), and 
these limitations are not necessarily specific to nutritional 
epidemiology. Indeed, Hernán, in discussing the use of 
causal language for epidemiological research, succinctly titled 
a section, “Of course ‘association is not causation,’” and 
outlines the importance of articulating better causal ques-
tions than those calculated by simple associations (Hernán 
2018). Such tests do, however, have some merit. At a min-
imum, they assist in the generation of hypotheses—even if 
OATs, themselves, are poor tests of the hypotheses they help 
to generate. But unless a study is designed to strengthen an 
inference—and not simply to rehash others’ findings—it will 
do little to advance nutritional epidemiology’s body of 
knowledge and may merely amplify bias. The literature 
remains replete with OATs, sometimes repeating different 
iterations of the same association dozens upon dozens of 
times (e.g., Brown, Bohan Brown, and Allison 2013). The 
field needs to use more robust modes of inquiry, some of 
which we discuss below, especially when it becomes clear 
that yet another OAT will not advance the causal—or even 
associational—understanding of a nutrition-health relation 
(Brown et al. 2014).

While randomization may be the gold standard, in some 
cases it is not feasible or ethical. As Randomistas author 
Andrew Leigh (2018) explains:

Not every intervention can—or should—be randomized. A 
famous article in The British Medical Journal searched the lit-
erature for randomized trials of parachute effectiveness. Finding 
none, the researchers concluded (tongue-in-cheek): ‘the appar-
ent protective effect of parachutes may be merely an example 
of the “healthy cohort” effect… The widespread use of para-
chutes may just be another example of doctors’ obsession with 
disease prevention.’ Using similar critiques to those leveled at 
non-randomized studies in other fields, the article pointed out 
the absurdity of expecting everything to be randomly trialed. 
(Leigh 2018)

Others have similarly outlined the challenges to imple-
menting conventional randomized designs for questions 
related to diet (Hébert et al. 2016). The parachute analogy, 

or those like it at the logical extreme (Katz 2019), is not 
directly comparable to questions of how nutrition relates to 
chronic disease. Nutrition can impact chronic disease out-
comes in multiple ways and with generally small effect sizes. 
A lack of a parachute, by contrast, has one causal pathway 
and large, clearly observed acute effects (Hayes et al. 2018). 
Nonetheless, other biomedical disciplines have falsely claimed 
that their interventions were akin to a parachute, even when 
randomized trials were conducted to test the intervention 
(Hayes et al. 2018).

Still, challenges with applying randomization need not 
justify acceptance of the status quo. Modifications can be 
made. As Leigh continues, “The parachute study has been 
widely quoted by critics of randomized evaluations. But it 
turns out that experiments on parachute efficacy and safety 
are widespread” (Leigh 2018). Crash test dummies have been 
used in impact testing of jumps from various altitudes, and 
paratroopers were randomized to protective ankle braces 
which were found to reduce parachuting-related ankle 
sprains by a factor of six (Leigh 2018).

There is important and worthwhile middle ground 
between the position that conventional randomization is the 
only valid avenue and the notion that, for cases in which 
conventional randomization is not possible, any nonran-
domized study is equally acceptable and valid. In actuality, 
a mix of conventional and unconventional interventional 
approaches and quasi-experimental designs can be leveraged 
to great effect. As such, it is time for scholars to broaden 
their research modalities and to employ creativity during a 
study’s initial design.

Researchers also need to stay current on the growing 
number of available novel designs when simpler designs 
cannot answer the research question, and understand how 
to appropriately select, execute, and analyze results from 
them. Many textbooks on clinical and experimental research 
design in the behavioral health sciences emphasize “conven-
tional” experimental or quasi-experimental designs, including 
(but not limited to) two-group parallel arm, factorial, with-
drawal, crossover, and pragmatic trial designs (Friedman et 
al. 2010; Shadish, Campbell, and Cook 2001; Windsor et al. 
2001; Meinert 1986). While such designs are essential to 
the experimentalist’s toolkit, novel or less well-known vari-
ations on these designs may be useful. Stepped-wedge cluster 
randomized designs (Hemming et al. 2015); within-cohort 
randomized trials (also called Trials within Cohorts) (Kim, 
Flory, and Relton 2018); Randomization to Randomization 
(R2R) (George et al. 2018); packet-randomized experiments 
(Pavela et al. 2015); multiphase optimization strategy trials 
(MOST) (Collins 2018); sequential, multiple assignment, 
randomized trials (SMART) (Almirall et al. 2014; Lei et al. 
2012); and repeated N-of-1 trials (Duan, Kravitz, and 
Schmid 2013) each extend or provide alternatives to the 
standard randomized design by varying design features 
including the planned timing of treatment assignment, treat-
ment optimization criteria, participant expectancies, the 
consent process, and nature of the treatment. Increased 
familiarity with these designs and other novel designs, as 
well as the reasons for using them, will make it more likely 
that researchers will select an appropriate randomized design.
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The question remains as to which randomized designs 
provide the most relevant evidence for health care providers 
versus policymakers. A particularly salient example may be 
what Sacristán and Dilla (2018) call the “contradiction” of 
the pragmatic design:

The root of the contradiction is that the same model that 
considers that a pragmatic attitude aims to inform clinical 
decision-making assumes that health care decision-makers 
speak the language of populations. In reality, while historically 
decisions made by policy-makers have been population based, 
clinical decisions are always individual based. (Sacristán and 
Dilla 2018)

This “contradiction” has become more evident with grow-
ing interest in precision-medicine and the possibility of 
making inferences to individuals rather than to populations 
by using N-of-1 trials, which resemble the conventional 
crossover design in that they are multiple-period crossover 
experiments comparing two or more treatments, but within 
individual patients. It is encouraging to see debates about 
the relevance of different randomized designs to 
decision-making (Pavela et al. 2015).

Nonrandomized studies, too, have their place—provided 
that their designs’ potential limitations and assumptions are 
systematically evaluated and addressed accordingly. 
Furthermore, not all nonrandomized designs are the same, 
ranging from controlled (but nonrandomized) interventions 
to OATs. At a minimum, a thoughtful consideration regard-
ing the goal of nonrandomized research, such as causal 
inference, should be articulated (c.f., Chiu et al. 2021; Tobias 
and Lajous 2021). Error can influence study results in any 
direction, and even some stronger nonrandomized designs 
may, in practice, inadvertently exacerbate some bias.

Example: Family-based designs. Family-based designs, like 
all designs, are susceptible to threats to internal validity 
and have other assumptions that may or may not be 
met in a given application. To compare outcomes among 
siblings who do and do not experience an exposure or 
intervention, for example, a family-based design exploits 
familial relatedness to enhance confounder control. Yet, 
the design does not obviate the need for longitudinal 
data, measured at a suitable timescale, to rule out 
reverse causation and provide an appropriate test of the 
hypothesized effect (McGue, Osler, and Christensen 2010). 
Neither will the design, in and of itself, resolve bias 
from nonrandom measurement error (Trepanowski and 
Ioannidis 2018). Moreover, the design can be especially 
vulnerable to bias from random measurement error and 
unmeasured confounders that are not shared by family 
members (Frisell et al. 2012). Further limitations stem 
mostly from the requirement of discordance—the use 
of within-family variation in exposures and outcomes to 
estimate associations (D’Onofrio et al. 2016).

Even so, sibling comparisons—especially comparisons of 
discordant twins—were applied successfully as early as the 
late 18th century. Considered a health hazard at the time, 
coffee consumption was banned in Sweden. King Gustav III 
ordered a study on a pair of identical twins:

One twin agreed to drink three pots of coffee for the rest 
of his life, and the other one a similar amount of tea. Two 
prominent physicians were monitoring their health. Both phy-
sicians died before the experiment completed, one dying before 
the other. Gustav III himself was assassinated in 1792, while 
both twins lived healthily for a long time. Eventually, the 
tea consumer twin died at the age 83 years, and coffee won! 
(Afshari 2017)

Sweden’s coffee ban would be reversed in the 1820s, but 
today science demands stronger evidence than comparisons 
between only two twins. By the mid-20th century, some 
epidemiological uses of twin studies would include ruling 
out genetic confounding in associations of tobacco smoking 
with mortality (Lichtenstein et al. 2002; Kaprio and 
Koskenvuo 1989), studying correlates of obesity in small 
samples of well-characterized discordant twins and diet and 
mortality in larger samples linked to national health registers 
(Naukkarinen et al. 2012; Granic et al. 2013), and exploring 
the association of exposure to breastfeeding with obesity in 
childhood and adolescence using multiple sibling compari-
sons (Metzger and McDade 2010; Colen and Ramey 2014). 
There is potential for extending family-based designs to 
omics research—for instance, examining identical twins dis-
cordant for dietary factors (Pallister, Spector, and Menni 
2014; Barron et al. 2016).

While family-based approaches can enable researchers 
to control for sources of familial similarity (e.g., genetic 
factors, educational background, home environment, par-
enting practices) by design (i.e., without the need for mea-
sured covariates), the benefits of such study designs to 
nutritional epidemiology are bound by some conditions. 
Family-based designs are likely to be used to greatest effect 
in nutritional epidemiological study when (1) constructs, 
such as nutritional exposures, can be measured well, (2) 
unmeasured confounders are likely shared among siblings 
or other family members, (3) exposures vary within the 
family members studied (twins, siblings, etc.), and (4) lim-
itations and assumption violations can be identified and 
assessed, including through the use of multiple family-based 
designs and systematic sensitivity analyses (D’Onofrio et 
al. 2016).

Challenges moving forward.  No matter which study 
designs they use, researchers should be willing to 
tolerate and openly share statements of uncertainty and 
to publish their results, regardless of characteristics like 
statistical significance or consistency with the present 
zeitgeist. Unfortunately, doing so can present challenges 
for publishing results.

After conducting a systematic review of the literature to 
examine the relationship between built environments and 
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physical activity or obesity rates, a group of researchers 
(including authors on this paper) identified the need for 
higher-quality evidence, noting:

Recognizing that experimental studies are potentially not feasible 
in many situations, researchers should look for opportunities to 
employ quasi-experimental designs. One example of such designs 
is the difference-in-difference approach that seems particularly 
applicable for the study of environmental changes such as the 
addition of a greenway to a neighborhood. (Ferdinand et al. 
2012)

Upon learning that a new park would be erected in 
downtown Birmingham, AL, USA, the same group of 
researchers decided to study its impact on the body mass 
index (BMI) of children living nearby (Goldsby et al. 2016). 
They extracted changes in BMI from electronic health 
records collected by downtown Birmingham clinics and 
tested whether children living closer to the new park exhib-
ited changes in BMI, pre- and post-park, relative to those 
of children who lived farther away from the park.

Using difference-in-difference statistical modeling, they 
investigated park proximity and its associations on children’s 
BMI. The main takeaway? “Proximity to a park was not 
associated with reductions in BMI z-score” (Goldsby et 
al. 2016).

The researchers were forthcoming about their study’s 
limitations:

The sample sizes of the near groups were relatively small, 
potentially limiting the power to identify significant differences 
between groups. Having more children in the near groups would 
have been ideal, but being able to examine BMI longitudinally, 
even in a small group of children, provides valuable informa-
tion for other obesity researchers and policymakers working to 
address the U.S. obesity epidemic. (Goldsby et al. 2016)

However, it took myriad attempts for the researchers to 
find a journal willing to publish their findings. This diffi-
culty may have been in part because the results ran counter 
to conventional thinking about the potential health benefits 
of proximity to green spaces. It may also have been in part 
that, although common to other fields of study, the research-
ers’ more rigorous, quasi-experimental approach was gen-
erally unfamiliar to reviewers.

Nonetheless, null results still offer value. According to 
Reproducibility and Replicability in Science, produced by the 
National Academies of Sciences, Engineering, and Medicine 
(NASEM), “The advent of new scientific knowledge that 
displaces or reframes previous knowledge should not be 
interpreted as a weakness in science” (2019). On the con-
trary, such occurrences are a function of science’s “contin-
uous process of refinement to uncover ever-closer 
approximations to the truth.”

Rather than put forward yet another simple observational 
study, the group of researchers highlighted a different 
method, raised new questions, and created a roadmap for 
continued exploration. It is in these ways that the body of 
nutritional epidemiological knowledge can be made to move 
forward.

Stronger measurement

Recommendations

• Self-reporting tools have utility for some uses; 
however, when possible, self-report should be used 
in conjunction with additional, objective means of 
evidence validation, and should be avoided when 
invalid or unfit for a particular use. Increasing the 
accessibility of information about available objec-
tive measurements, their appropriate uses, and 
their relative costs could facilitate their increased 
use.

• Blending varying degrees of automation with tradi-
tional, observational studies can improve the quality 
of self-reported data. Ideally, investigators should 
have access to completely independent methods of 
determining food intakes, comprehensive analyses 
of the chemical compositions of foods that include 
ranges of nutrient variability, and fully independent 
methods of assessing specific nutrient intakes.

• Researchers should continually seek additional bio-
markers and other new technologies and methods 
for collecting objective data. Multi-disciplinary part-
nerships and interactions may be able to hasten 
improvements in available objective measurements. 
Institutions and funders should prioritize the devel-
opment, training, and use of such improvements.

Discussion summary
Status quo: Self-report.  The field’s continued reliance 
on substandard measurements has hindered progress 
in nutritional epidemiology. In particular, traditional 
observational methods such as self-reporting remain 
mainstays, despite their potential for inaccuracy.

Consider, for instance, the assessment of energy intake 
using self-reporting. Self-reported energy intake was first 
compared with doubly-labeled water—a biomarker of habit-
ual energy intake—in 1986. The self-reported measure 
underestimated energy intake by 34% in women with obesity 
(Prentice et al. 1986).

Moreover, systematic reviews have since identified 59 
studies, including 6,298 adults, and 15 studies in 664 
children that compared energy intake from food diaries, 
24-hour recalls, or food frequency questionnaires (FFQs) 
with doubly-labeled water energy expenditure (Burrows 
et al. 2019; Walker, Ardouin, and Burrows 2018). 
Underreporting of energy intake averaged about 20%, but 
varied from 1% to 67% across these studies. Underreporting 
was common in participants older than eight years, 
increased with body mass index, and was found in coun-
tries at all stages of economic development. Attempts to 
reduce bias in energy intake estimates by excluding 
extreme values, for example, the use of “Goldberg cutoffs,” 
have been shown to be unreliable (Ejima et al. 2019). 
These problems with self-report-based estimates of energy 
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balance have resulted in calls to discontinue their use in 
the calculation of actual energy balance (Dhurandhar et 
al. 2015). Yet, their use continues.

Studies using biomarkers of protein, potassium, and 
sodium intake have found that underreporting occurs most 
for foods characterized by lower protein and sodium content, 
which is consistent with selective underreporting of high-fat, 
high-sodium snack and savory food items. These deficiencies 
were first reported over 35 years ago and have been con-
firmed in multiple studies. Yet, their use continues.

The FFQ, which is most commonly applied in large 
cohort studies, does not accurately estimate frequency of 
intake or gauge serving size (Willett et al. 1987). Correlations 
of intake data with a limited number of plasma biomarkers 
suggest mostly weak to moderate associations among large 
groups (Cade et al. 2004). Correction for energy intake 
might account for different energy needs. However, energy 
intake from FFQs is invalid (Dhurandhar et al. 2015), and 
thus correcting for it calls into question all extrapolated 
nutrient data, especially for extrapolation of risk for indi-
viduals (Krall and Dwyer 1987). There do not appear to be 
any modifications of the FFQ that would produce accurate 
and precise data (Kipnis et al. 2002). The clearest benefit 
of the use of FFQs is the collection of some degree of 
dietary information before disease occurs, precluding reverse 
causality by accounting for a temporal relationship.

Dietary intake assessments frequently depend on con-
scious recall of the foods being studied. The data on the 
contents of all of the nutrients and bioactive substances 
present in the reported foods being consumed are also a 
source of error. And so are the data on the variability of 
contents—due to individual cultivars, harvesting and storage 
conditions, food preparation and cooking methods, and the 
relationships of these to the lifestyle, behavioral, and envi-
ronmental variables (sometimes referred to as an “expo-
some”) that co-vary with dietary intakes.

Despite such well-documented but frequently unaddressed 
short comings, the use of self-reported dietary assessment 
instruments remains commonplace. Proponents of the con-
tinued use of self-reported nutritional data often surmise 
that using such methods is better than nothing, given the 
importance of diet in the maintenance of health and devel-
opment of disease (Satija et al. 2015). Unfortunately, when 
used in isolation, self-reporting is a rather blunt instru-
ment—one that can limit the scope of a study’s design and 
negatively impact the nature and quality of the research 
questions pursued. Indeed, in the example of self-reported 
energy balance, the direct use of self-report has been worse 
than nothing (Dhurandhar et al. 2015).

Utility of self-report.  That is not to say there is no longer 
any room for self-reporting. Two of the most common 
methods for assessing dietary intake, 24-hour recalls and 
FFQs, can be implemented in many ways, and some 
of these implementations—like the Automated Multiple 
Pass Method (AMPM) and the ASA24 (adapted version 
of AMPM for self-administration)—perform better than 
others (Moshfegh et al. 2008).

Originally developed by the U.S. Department of 
Agriculture (USDA)/Agricultural Research Service (ARS) for 
the National Health and Nutrition Examination Survey 
(NHANES), the AMPM puts energy intake within 3% of 
estimates from doubly-labeled water in people with BMI < 
25 (Moshfegh et al. 2008). However, with increasing degree 
of overweight, this decreases to 80% of true intake, so over-
all population estimate is 89% of actual energy requirement. 
Additional validation of sodium intake, which correlates 
strongly with energy in the diet, showed 90%recovery in 
urine samples (Rhodes et al. 2013). Even these levels may 
not be adequate for usual weight changes but may be enough 
for macronutrients.

NHANES uses two nonconsecutive recalls to estimate 
intake. The first of these—a face-to-face meeting with 
trained personnel—uses three-dimensional models to esti-
mate food serving sizes. The second interaction occurs via 
telephone and uses actual-size, two-dimensional food images 
in booklets provided to participants. It is well understood 
that older-style, 24-hour recalls must be administered mul-
tiple times to estimate nutrient intake in individuals, whereas 
a much smaller number of recalls is needed to approximate 
population averages, which is the proper use of NHANES 
data (Basiotis et al. 1987). NHANES data are cross-sectional, 
and thus provide weak causal evidence, even when repeated 
over time.

Because it takes 30 minutes to complete and is adminis-
tered in the NHANES setting, the 24-hour AMPM may be 
ill-suited to large cohort studies due to time and cost. But 
the National Cancer Institute (NCI) has developed an 
internet-based, self-administered version of the AMPM 
called the Automated Self-Administered 24-hour (ASA24) 
Dietary Assessment Tool. ASA24 similarly may afford more 
standardization than other, traditional observational methods 
(Subar et al. 2012). Investigators can also rely on limited 
biomarkers for other nutrients to assess the performance of 
these diet assessment tools.

Moving beyond self-report in isolation.  Combining 
traditional observational methods with more objective 
measurements can greatly boost a study’s utility, but 
in deciding which objective measurements to include 
in a design, researchers across scientific disciplines 
face the same trilemma. The ideal tool would provide 
measurements that are 1) accurate and precise, 2) detailed, 
and 3) frequent. However, the fundamental nature of a 
trilemma is that it is impossible to secure all three equally 
and simultaneously.

This notion certainly applies to dietary measurements. 
Case in point: while food diaries, 24-hour recalls, and FFQs 
all focus on dietary detail, that emphasis on detail inherently 
reduces both the accuracy and frequency of measurement. 
On the other hand, a tool such as doubly-labeled water 
provides accurate measures of metabolizable energy, but 
little in the way of detail (Speakman et al. 2021). For some 
diet-disease relationships, knowledge of specific nutrient 
intake is important. However, for obesity, the most prevalent 
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diet-related condition in the United States, no clear dietary 
intervention prevails for long-term efficacy. For obesity, 
measurement tools need to focus on accuracy and frequency 
of measurement of energy intake.

Some of the tools nutritional epidemiologists can leverage 
to collect data more accurately and with more frequency 
include wearable devices developed to detect and measure 
consumption (Hoover and Sazonov 2016). These devices 
can reduce underestimation of energy intake by providing 
an objective measure that does not rely on self-reporting 
(Salley et al. 2016).

For example, in one study of automated bite counting 
that used wrist-motion tracking, estimates of energy intake 
were significantly more accurate than a guess, and automated 
bite counting was comparable to human estimates using a 
detailed menu. By automating the measurement process, 
these devices also reduce cognitive load and, hence, user 
burden (Weathers, Siemens, and Kopp 2017). This, in turn, 
helps to increase frequency of measurement.

Although these wearables may be designed to accurately 
estimate energy intake, they offer poor precision. Some 
wearables have poor precision because they treat all foods 
equally. One study of 30 subjects that used a sensor to 
measure chews and swallows, found an average error of 
approximately 30% of energy intake per validation meal and 
16% for training meals, compared to investigator measured 
intake (Fontana et al. 2015). The study also used estimates 
from photographic food records, which showed approxi-
mately 20% error in both cases. Another study of 77 people 
compared automatic bite count with kilocalories measured 
by use of 24-hour recall over a two-week period (2,975 
meals/snacks) and found a per-meal correlation of 0.53 
(Scisco, Muth, and Hoover 2014). While the self-reported 
intake in the latter study was subject to the issues already 
discussed with self-report, in both of these studies, the 
average per-meal accuracy was high, at the expense of lower 
per-meal precision.

Although these examples focused on energy intake, other 
technologies exist (e.g., photogrammetric approach, contin-
uous blood glucose monitoring, metabolomic profiles). Each 
case sacrifices parts of the trilemma. A bite counter gives 
(on average) accurate energy intake, details on consumption 
and chewing patterns, and frequent measurement, but lacks 
information on other characteristics of the food or meal. 
Photogrammetric approaches provide a richer detail of meal 
content and context, but do not provide the same informa-
tion on eating rate and may require user input to calibrate 
information for specific meals. Despite their limitations, 
however, the newer technologic and biomarker approaches 
provide objective measurements that are not dependent on 
self-report.

Addressing nutritional epidemiology’s data-related chal-
lenges may entail developing entirely new ways of mea-
suring food consumption, assessing specific nutrient 
intakes, and of more accurately analyzing the chemical 
compositions of foods. Collecting data via a mix of more 
objective measurements and using increasingly robust 
study designs will help to advance nutritional epidemi-
ology. But for these changes to be truly effective, 

additional reforms related to the analysis of these data 
are also needed.

Stronger analyses

Recommendations

• The relationship of dietary factors to numerous 
potential confounders, such as age, sex, education, 
and income, should be determined, and uniform 
standards developed to include and address these.

• Investigators should use multiple analytical methods, 
including appropriately robust and sometimes novel 
statistical tools, to mitigate biases common to simple 
observational studies.

• To resolve the complex problem of innumerable 
interacting variables in the exposome, investigators 
should seek information technology approaches to 
the investigation, reduction, and interpretation of 
data.

Discussion summary
The factors discussed in “Stronger Designs” and “Stronger 
Measurements” allow the field of nutritional epidemiology 
to employ strategies that result in stronger prediction and 
causation (Imbens and Rubin 2015; Rosenbaum and Rubin 
1983; Morgan and Winship 2015). Yet many investigations 
still use OATs to explore the relationship between X and 
Y, in which an investigator might speculate that X causes 
Y. After observing the association of X and Y, a potential 
confounder, Z, arises. So the investigator measures and con-
trols for the presumed confounder, Z. What is the problem 
with this method? In addition to the quality of inference 
depending critically on the quality of the measurement (dis-
cussed above), failure to model the functional form correctly 
can at best reduce and at worst contribute to bias (Westfall 
and Yarkoni 2016).

Reliance on just one approach for ruling out alternative 
explanations can leave invalidities or biases behind. When 
multiple methods are incorporated, they can greatly reduce 
the number of alternative explanations. In this section, we 
touch on three potential concerns for inference: within- 
versus between-subject effects, incorporating complexities 
of new measurement methods, and stronger inferential 
analyses.

Within- versus between-subject effects.  Analysis of 
“between-person” and “within-person” data can provide 
clarity to research questions. To the extent observational 
data are used to support causal inference, assumptions 
must be considered for how X (the independent variable) 
was “assigned” in the population, such as the level of 
analysis at which the variables are covarying.

Often, X, Y, and Z data are collected on a sample of 
people and, so, the covariation matrix represents the 
between-person covariation. However, if the variables were 



8 A. w. BROwN eT AL.

collected as repeated measures on an individual person, then 
the covariation represents correlated changes within the per-
son. This distinction of between- and within-person covari-
ance is not trivial. The two levels of analysis are 
fundamentally different, and only under special conditions 
can inferences at one level be extended to the other.

People are complex, dynamic biological systems—systems 
that evolve over time. Nutritional epidemiology is interested 
in the covariation of certain variables relevant to health. 
However, the data usually represent the between-person 
covariation of various factors, yet the inferences are usually 
intended to be at the within-person level. The implication 
is that changes in one variable might lead to (that is, cause) 
changes in another variable within a person. But the cova-
riance matrix of X, Y, and Z can look very different at the 
between- and within-person levels. For many biological 
processes, there is abundant homogeneity in the human 
population. But individual variation and path dependencies 
exist as well. Growth, development, and learning are all 
non-stationary processes (Molenaar 2004).

To the extent that nutrition-related exposures are analyzed 
to show correlations, the analysis takes place at the 
between-person level and does not necessarily capture 
within-person correlations. As one example, Forbes (1984) 
re-analyzed food diary data and body weight data that 
seemed perplexing because of an apparent lack of relation-
ship between the two. But, when he plotted within-person 
change in intake against within-person change in body mass, 
he observed a nearly perfect correlation.

Although worthwhile, within-person analyses can be more 
expensive to gather and more complex to analyze. They 
sometimes necessitate intensive longitudinal measures suf-
ficient to estimate the covariance structure. They also require 
statistical methods such as time series, vector auto-regressive 
models, and hidden Markov models, which are not usually 
taught in many graduate programs.

Additionally, conducting within-person analyses can 
involve feedback among the X, Y, and Z variables. Should 
this take place at the within-person level, such feedback can 
dampen correlations observed at the between-person level.

Although within-person studies may require substantial 
effort to conduct, it is important to collect the appropriate 
data to support the intended inferences. To be clear, there 
are many questions that are well-answered with 
between-person data, such as any health factor where human 
response is highly uniform. However, these cases are the 
ones in which the conditions of homogeneity of process are 
best met. The relevance of between-person covariance to 
within-person inference is an assumption that must be con-
sidered to support more robust research claims.

Incorporating complexities of new measurement 
methods.  Whether OATs or more advanced analyses 
are used, automated measures such as wearable physical 
activity monitors can introduce assumptions that also 
must be considered and corrected for. While the use of 
newer automation tools in tandem with more traditional 

observational study methods can help to provide 
researchers with greater accuracy and clarity, the potential 
presence of measurement error cannot be discounted.

Nutritional epidemiology lacks uniform approaches to 
handling such a mountain of exposome data and their rela-
tionship to nutrition or health outcomes. Attributing a 
health risk to a single food or nutrient, as nutritional epi-
demiology does in studies that often dominate the list of 
most ‘popular’ nutrition articles, is no longer entirely defen-
sible given the food-to-exposome, food-to-food, and food-to-
other relations among variables. Relying solely on 
self-reporting as the method of observation is even less 
defensible, but some of the same or related complexities 
arise in more objective measurements.

Consider for example, the complex, high-dimensional 
data collected from physical activity monitors. Ideally, 
researchers would be able to explore the full algorithms 
used to generate the end-user data that physical activity 
monitors provide. But, because manufacturers of 
commercial-grade wearable technology largely deem these 
equations proprietary, these algorithms are difficult to obtain 
except from research-grade devices. Nevertheless, it is pos-
sible to account for and resolve measurement error associ-
ated with wearable devices, but classic regression methods 
may be inadequate for this purpose.

Recently, researchers developed and applied novel statis-
tical modeling to correct for wearable device measurement 
error in a childhood obesity study (Tekwe et al. 2019). Those 
authors note:

In this setting, we considered a scalar valued outcome with a 
functional covariate that was corrupted by measurement error. 
Most existing methods either implicitly assume the measurement 
errors are independent over time, or the measurement error 
covariance is known or can be estimated. However, the measure-
ment errors are likely to be correlated over time. In addition, 
the measurement error variances are never known and estimates 
are seldom available. In this paper, we took advantage of the 
additional information provided in an instrument variable and 
developed a generalized method of moments-based approach 
to identify and consistently estimate the functional regression 
coefficient. (Tekwe et al. 2019)

The researchers illustrated that ignoring measurement 
error can lead to biased estimations. They add, “We success-
fully applied our proposed model to conclude that the esti-
mated association between baseline measures of energy 
expenditure and the 18-month change in BMI was sometimes 
significant. This association indicated that school programs 
and policies that increase physical activity among students 
might have some beneficial impact… Our developed methods 
improve on the current statistical approaches used to evaluate 
the effectiveness of such policies” (Tekwe et al. 2019).

Multiple analytical strategies together—including appro-
priately robust statistical tools—can also mitigate residual 
confounder, reverse causation, and other biases that com-
monly plague observational studies (Davey Smith and 
Ebrahim 2003). Some of these tools have been popularized 
in other disciplines, and nutritional epidemiology can learn 
from the groundwork laid by others. We introduce a few 
such approaches below.
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Stronger inferential analyses.  Widespread genetic testing 
in large-scale cohorts promises statistical power sufficient 
for generating stronger (and often polygenic) analyses 
for nutritional exposures. These genetically informed 
analyses are useful for investigating genetic associations 
and producing more individualized nutrient-outcome 
predictions. More important to the discussion of 
causation, Mendelian randomization (MR) using genetic 
information can be used in these large-scale cohorts to 
link nutritional exposures to health outcomes.

An adaptation of the instrumental variable approach, MR 
relies on the genotype as a valid proxy for nutritional (or 
other types of) exposure and quantifies the causal effect of 
this proxy on the outcome of interest. Because genotype 
necessarily precedes any disease outcome, MR conclusions 
are impervious to reverse causality. Furthermore, because 
of Mendel’s law of independent assortment, both (unlinked) 
measured and unmeasured confounders are, on average, 
similarly distributed across genotype/exposure groups, 
thereby reducing the likelihood of bias due to 
confounding.

To date, MR has been successfully used to investigate 
causal effects of exposures related to alcohol and obesity 
(Au Yeung et al. 2012; Winter-Jensen et al. 2020). In other 
studies, the causal effect of dairy consumption on a variety 
of cardiometabolic outcomes was successfully estimated by 
using lactase persistence polymorphism (LCT-12910C > T) 
(Mendelian Randomization of Dairy Consumption Working 
Group 2018; Vissers et al. 2019). LCT-12910C > T has been 
shown to be a reliable proxy for dairy intake, although its 
effectiveness as such may vary by population (Chin et 
al. 2019).

The validity of such MR conclusions generally is predi-
cated on three assumptions. First, a genotype must serve as 
a strong proxy for the exposure that it is purported to 
represent. This assumption is often tenuous in nutritional 
epidemiology. This is especially true for the most contro-
versial exposures such as red meat, eggs, industrially-processed 
food, or sugar-sweetened beverages. Because of the limited 
magnitude of genetic effects, often MR studies require very 
large samples to achieve sufficient statistical power. Yet, even 
with well-powered studies, confounding by total energy 
intake remains an almost intractable possibility, threatening 
the validity of the resulting findings.

The second assumption precludes any horizontally pleio-
tropic effects of the genotype on the outcome. This condi-
tion may be tested using commonly implemented statistical 
methods and replaced by more lenient assumptions in some 
MR models (Haycock et al. 2016).

The third assumption excludes any confounding of the 
relationship between the genetic proxy and the disease out-
come and is not directly verifiable. Even with its caveats, 
MR is another potentially useful analytical tool for nutri-
tional epidemiology. Training in best practices should 
include selecting appropriate nutritional exposures and their 
genetic proxies, testing of MR assumptions, choosing appro-
priate statistical models, and establishing reproducibility of 
MR findings.

Another approach, used more frequently by econometricians 
to uncover previously unmeasured biases, uses statistical anal-
yses to create an empirical distribution of non-causal associa-
tions. That is, a model is run on the exposure-outcome 
relationship of interest (e.g., a food’s relationship to cardiovas-
cular disease), and on relationships that are not expected to 
be causally related, which are treated as controls. Finding an 
association in these presumed non-causal, control relationships 
may indicate that a common bias explains the association in 
both the relationship of interest and the control relationships. 
A related comparison has been used to discuss the causal 
evidence behind a diet-mortality association (Klurfeld 2015), 
and investigators on the present paper are involved in using 
a generalized method sometimes referred to as empirical 
p-value calibration (Schuemie et al. 2014) to investigate 
nutrient-disease relationships.

Yet another approach relates to the flexibility in choices 
in OATs, in which selection biases (intentional or uninten-
tional) in choosing covariates (e.g., age, sex) and operation-
alization of dietary variables (e.g., dichotomous, continuous) 
may result in substantially different results. Rather than 
trying to identify one “best” model, another approach is to 
test the robustness of the analysis on many different legit-
imate analytical choices. In the simplest form, this is done 
in OATs by modeling a bivariate relationship, the selectively 
adjusted model, and the “kitchen sink” (or inclusion of all 
covariates) model. A multi-verse of analyses (Steegen et al. 
2016), also called vibration of effects (Patel, Burford, and 
Ioannidis 2015) or specification curve analyses (Simonsohn, 
Simmons, and Nelson 2019), extends this to test many dif-
ferent model specifications. If the models are not robust to 
these choices, the nature of any causal relationship between 
the exposure and outcomes of interest comes into question.

Combining these stronger analytical approaches, along 
with considering appropriate inference (e.g., between-person 
and within-person designs) and applying novel statistical 
approaches to datasets, are just some of the many supple-
mental methods nutritional epidemiology could—and 
should—be using to move beyond OATs. Doing so is integral 
to the management and mitigation of alternative explana-
tions and can serve to strengthen nutritional epidemiology’s 
contributions to science.

Stronger execution and reporting

Recommendations

• Nutritional epidemiology should adhere to reporting 
guidelines (e.g., CONSORT and STROBE-nut).

• To prevent selective non-reporting of studies and 
results, investigators should register research prospec-
tively (e.g., on ClinicalTrials.gov) and report results 
for all outcomes and analyses.

• To improve transparency and openness, investigators 
should share research materials, data, and code.

• To promote scientifically appropriate interpretations, 
researchers should avoid “spin” in scientific reports and 
press releases and identify limitations associated with 
their findings.
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Discussion summary
Considering causal inference in nutrition.  What it 
means to have cause and effect is the same whether an 
investigator is considering chemical reactions in a tube, 
pharmaceuticals in people, or social determinants of 
health. What differs is the ability to probe those questions 
with gold-standard, causal methodology. The difficulty in 
answering causal questions in nutrition has resulted in 
some authors proposing lowering the field’s standard of 
evidence (Katz et al. 2019; Schwingshackl et al. 2016). 
This includes elevating or disregarding problems with 
limited-quality assessments, such as FFQs; trusting non-
representative, qualitative evidence as causal evidence; 
and assigning arbitrary point values to (misinterpreted) 
heterogeneity across studies in nutrition science.

One approach, NutriGrade, suggested down-weighting evi-
dence based on disclosure statements or affiliations 
(Schwingshackl et al. 2016). However, evaluating evidence 
based on disclosures is untenable given inherent biases in the 
field regardless of funding (Ioannidis and Trepanowski 2018). 
Interpreting science should be limited to the data, the meth-
ods, and the logic connecting the data and methods to the 
results (Brown, Kaiser, and Allison 2018). Indeed, members 
of the Grading of Recommendations Assessment, Development 
and Evaluation (GRADE) Working Group rebutted incorpo-
ration of funding bias in a nutrition-specific grading scheme, 
stating, “There is no plausible rationale or supporting evidence 
to justify their approach to include funding bias as a separate 
item” (Meerpohl et al. 2017). Evidence should be evaluated 
based on the science, not the scientists.

One challenge in evaluating evidence in a “hierarchy of 
evidence” is the implicit or explicit assumption that studies 
are addressing the same question, but often they may not 
be. Any description of the strength of evidence must include 
a clear delineation of the research question being asked. In 
evidence-based medicine, this is often represented by 
PICOTS elements. These include the Population being stud-
ied; the Intervention or exposure thought to cause an effect; 
the Comparator or Control, which is an alternative to the 
exposure; the Outcome, which is the health state being 
assessed; the Time at which the outcome is being assessed, 
and the Setting or Study design, which includes description 
of an experimental setting and type.

Frequently, a “hierarchy of evidence” is constructed with 
meta-analyses of randomized trials perched at the top and 
with observational evidence, animal studies, and in vitro 
studies descending the pyramid. Yet, a randomized trial will 
frequently investigate a well-characterized exposure (the I 
in PICOTS), such as a defined or specified nutrient or diet, 
but the trial will evaluate an intermediate outcome, such as 
blood cholesterol rather than atherosclerosis.

On the other hand, some of the more useful observational 
studies may use poorly characterized exposures—such as 
self-reported food frequency estimates extrapolated to actual 
nutrient quantities—but measure the actual outcome of interest, 
such as ischemic stroke. In those examples, the randomized 
controlled trial has a high-quality exposure and inferential 
design, but it fails to evaluate directly the outcome of interest. 

Meanwhile, the observational study has a low-quality exposure 
and inferential design, but it does study the outcome of interest.

Systems such as GRADE explicitly consider the strength 
of evidence in causal health claims (Guyatt et al. 2006). 
Meta-analyses of high-quality randomized controlled trials 
often lead to the greatest certainty ratings, given their key 
importance for average causal effects.

Te Morenga and colleagues (2012) communicated the 
challenge of evaluating nutrition science using approaches 
like GRADE, by noting that nutrition research may be sub-
ject to “potential bias, inconsistency, indirectness, impreci-
sion or reliance on study type other than randomized trials”, 
which results in the downgrading of evidence. They sug-
gested that “formally identifying effects which are regarded 
as important and based on high quality evidence using the 
GRADE system may be unattainable in the context of nutri-
tional determinants of chronic disease” (Te Morenga, 
Mallard, and Mann 2012).

This sentiment was echoed by others in response to the 
publishing of NutriGrade (a nutrition-specific alternative 
to—rather than an extension of—GRADE), in which mem-
bers of the GRADE Working Group remarked that “…lack 
of blinded randomized controlled trials and the resulting 
sparse bodies of randomized evidence is not a methodologic 
shortcoming of the GRADE approach but a limitation of 
the evidence base” (Meerpohl et al. 2017). The strength of 
causal evidence is therefore understood to be a property of 
the science, and that nutritional epidemiology is not in some 
way exceptional.

In one argument against approaches such as GRADE, the 
authors of NutriGrade state their group is comprised of 
nutrition scientists, “whereas GRADE is historically com-
posed of mostly clinical research scientists” and that other 
disciplines have “found that processing evidence in the clin-
ical research compared with the public health research areas 
follows slightly different approaches” (Schwingshackl et 
al. 2017).

This seems to imply that nutrition should not be a clin-
ical science and that public health should be held to lower 
standards of causal evidence. It is true that the strength of 
evidence in public health and nutritional epidemiology is, 
frequently, of lower causal strength compared with some 
other health-related fields. Rather than adopt low standards 
of evidence, individual scientists, journals, and scientific 
societies should embrace transparency and communicate the 
strengths and limitations of various approaches to nutrition 
research with greater clarity and nuance.

Example of applying GRADE to nutrition.  GRADE 
approaches have been successfully used to evaluate and 
communicate nutrition evidence. NutriRECS (Nutritional 
Recommendations and accessible Evidence summaries 
Composed of Systematic reviews) (Johnston et al. 2018), for 
instance, has evaluated multiple questions in the domain 
of nutrition using the GRADE approach, including named 
dietary patterns and weight or cardiovascular disease risk 
factors; red and processed meat and health outcomes; 
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probiotics to prevent Clostridium difficile infection; and 
others (Ge et al. 2020; Johnston et al. 2019; Goldenberg, 
Mertz, and Johnston 2018). The approach demonstrates 
that guidance consistent with internationally-accepted 
standards can be achieved in the domain of nutrition.

However, recommendations coming from evidence sum-
maries can sometimes be confusing, even if based on strong 
methodology at the core. For example, NutriRECS uses the 
GRADE “evidence to decision” framework (Alonso-Coello, 
Schünemann, et al. 2016; Alonso-Coello, Oxman, et al. 
2016), which includes factors like how much stakeholders 
value the outcome and whether the intervention would be 
acceptable. The red and processed meat example mentioned 
earlier received considerable public attention. Although char-
acterized as a successful use of the approach, the authors 
establish weak evidence, yet make an active recommendation 
to continue current levels of consumption based on the 
“evidence to decision” framework. The recommendation 
process thus risked conflating conclusions derived from the 
science with the decisions based on what the target popu-
lation may prefer. An active recommendation to continue 
current practice might imply to the audience that changing 
consumption levels—in either direction—would be delete-
rious for health, as opposed to being most consistent with 
preferences.

Nonetheless, much of the public criticism of the 
NutriRECS conclusion was based on nutrition exceptionalism 
(i.e., that evidentiary standards should be different in nutri-
tion), or perceived conflicts of interest (i.e., factors unrelated 
to the data, methods, or conclusions) (Qian et al. 2020; 
Neuhouser 2020; Leroy and Barnard 2020; Rubin 2020; 
Oreskes 2021; Vernooij et al. 2021).

Improving research reporting.  The strengths of a body of 
evidence cannot properly be evaluated if the collection of 
evidence is inadequately reported. All too often nutritional 
epidemiology is discredited through multiplicity and the 
selective non-reporting of studies and results. When 
combined, these may be the greatest contributor to 
the falsity of scientific claims (Goodman, Fanelli, and 
Ioannidis 2016).

Studies might evaluate the effect of a nutrient by calcu-
lating multiple primary and secondary outcomes. The num-
ber of results estimated in a study is a function of both the 
number of outcome definitions and the number of methods 
used to analyze those outcomes (Mayo-Wilson, Li, et al. 
2017). Even more results are calculated when studies also 
evaluate the effects of multiple exposures (e.g., nutrients). 
Because some results will appear to be both clinically and 
statistically important by chance alone (i.e., false positives), 
conducting multiple studies and calculating multiple results 
leads to both true discoveries and false discoveries (Tannock 
1996; Greenland 2008). One potential solution is, within a 
dataset, to make public the number of possible independent 
variables after accounting for their correlations, and the 
typical correlations between exposures and outcomes to 
place new results in their context (Patel and Ioannidis 2014). 

Additional methods, as discussed previously, have been 
developed to assess results from the spectrum of model 
specifications simultaneously to test the robustness of rea-
sonable analytical choices (Steegen et al. 2016; Simonsohn, 
Simmons, and Nelson 2020; Patel, Burford, and Ioannidis 
2015). Such methods may mitigate bias from the numerous 
researcher choices during the analysis phase (Gelman and 
Loken 2013).

Results in journal articles might be systematically biased 
if they include a disproportionate number of “positive” 
results, and if the “negative” (e.g., non-significant) results 
are disproportionately represented in investigators’ file draw-
ers (Rosenthal 1979). That notion is supported by direct 
evidence of study non-publication and by evidence that 
“primary outcomes” reported in journal articles differ sys-
tematically from those reported in study protocols, both of 
which are related to the significance of results (Chan et al. 
2004; Hahn, Williamson, and Hutton 2002; Cooper, DeNeve, 
and Charlton 1997). Reviews and meta-analyses (Williamson 
et al. 2005; Williamson and Gamble 2005; Goodman and 
Dickersin 2011; Mayo-Wilson, Li, et al. 2017) and scientific 
theories might be incorrect if they depend on a biased 
subsample of results and hypothesizing after the results are 
known (“HARKing”) (Kerr 1998).

The selective non-reporting of studies and results, known 
as “publication bias” and “outcome reporting bias,” respec-
tively, is prevalent in health research (Dwan et al. 2013). 
Underreporting research has been proposed to be a form 
of scientific misconduct (Chalmers 1990; Wallach and 
Krumholz 2019), and some investigators withhold data 
because of competing interests (Blumenthal et al. 1997). 
Others fail to submit null findings for publication because 
they believe their results are uninteresting or unimportant, 
or that publishers simply will not wish to print them (Chan 
and Altman 2005; Franco, Malhotra, and Simonovits 2014; 
Dickersin 1990).

The ability to reproduce results from previous studies is 
often a hallmark of their truthfulness (Goodman, Fanelli, 
and Ioannidis 2016). Both multiplicity and selective 
non-reporting have contributed to irreproducibility in nutri-
tional epidemiology, and the field’s dearth of data 
transparency.

Reproducible workflows and open science.  Large-scale 
statistical modeling, simulation, and data analytics are 
hindered by a lack of uniformity in software workflows. 
This has further contributed to the ongoing “reproducibility 
crisis” in several science domains, including nutritional 
epidemiology (n.b., we recognize disagreement over 
calling it a “crisis”) (Sweedler 2019). Computational 
platforms, data sharing frameworks, and archiving of 
computing environments support reproducibility by 
lowering barriers to scientific sharing and information 
preservation (Huo, Nabrzyski, and Vardeman 2015; Open 
Science Collaboration 2015; Baker 2016). Nutritional 
epidemiology can take advantage of scientific workflows 
in order to process large-scale scientific computations in 
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distributed systems. Workflows and distributed systems 
have been adopted across scientific domains and have 
underpinned some of the most significant discoveries of 
the past several decades (Deelman et al. 2015; Klimentov 
et al. 2015).

Nutritional epidemiology can also leverage open-source 
software and open science. The datasets and code used in 
nutritional epidemiology are rarely made public, hindering 
reproducibility efforts. Because scientific computing has 
moved toward the adoption of such tools to perform anal-
yses, data—including input and output datasets, graphs, and 
intermediate results—are increasingly made available as part 
of the scientific outcome. Some initiatives have proposed 
systems, such as RunMyCode.org, Research Compendia, 
Research Objects, and myExperiment, which facilitate the 
reproducibility of analyses across processing environments 
(Goble et al. 2010; Stodden, Hurlin, and Pérignon 2012; 
Nüst et al. 2017; Bechhofer et al. 2010). Other initiatives 
have published online, open-source books that share data, 
code, software versions, or archived computational environ-
ments to foster reproducible practices (Kitzes, Turek, and 
Deniz 2017). These open-source items could then be used 
as “proof-of-reproducibility” elements in scientific publica-
tions or as executable receipts to assist others as they 
attempt to reproduce equivalent environments.

Registering the details of one’s study also would raise the 
bar for nutritional epidemiology. First proposed for clinical 
trials (Chalmers and Nadas 1977; Simes 1986; Meinert 1988), 
study registration is now a widely used method for recording 
basic details of both trials and observational studies (Nosek 
et al. 2015), and is a scientific and ethical imperative (World 
Medical Association 2001; De Angelis et al. 2004). To reg-
ister a study, investigators enter information about study 
design and procedures in a public, independently-controlled 
register. By defining outcomes completely (Zarin et al. 2011; 
Cybulski, Mayo-Wilson, and Grant 2016) and by registering 
studies prospectively, sometimes called “preregistration” (Rice 
and Moher 2019), investigators can improve trust in their 
findings, link multiple reports about the same study 
(Mayo-Wilson, Li, et al. 2018), and increase access to their 
results (Chan et al. 2014). The World Health Organization 
has defined a minimum dataset and maintains an interna-
tional list of study registers (De Angelis et al. 2005). The 
largest register, ClinicalTrials.gov (Zarin et al. 2017), is main-
tained by the U.S. National Institutes of Health (NIH) and 
includes both trials and observational studies from around 
the world (Williams et al. 2010). Because registering and 
updating registrations requires time and expertise, and 
because institutions may be ethically and legally responsible 
for ensuring that studies are registered, universities should 
support investigators in this process (Mayo-Wilson, Heyward, 
et al. 2018).

In addition to registers, detailed methods can be pub-
lished in study protocols (Chan et al. 2013) and statistical 
analysis plans (SAPs) (Gamble et al. 2017). Protocols and 
SAPs are useful for minimizing and identifying multiplicity 
and selective non-reporting. That is, a well-defined out-
come can be analyzed using many statistical methods, 

which will produce different numerical results (Mills 1993; 
Simmons, Nelson, and Simonsohn 2011). Publishing pro-
tocols and statistical analysis plans can help investigators 
to clarify their hypotheses in advance (Nosek et al. 2018), 
avoid the temptation to conduct inappropriate analyses 
(Wang, Yan, and Katz 2018), and identify differences 
between planned results and the results in their final 
reports (Pc et al. 2010). These documents are critical com-
ponents of a system needed to promote rigorous design, 
measurement ,  and rep or t ing  (Dickers in  and 
Mayo-Wilson 2018).

Developing a core outcome set—the minimum group of 
outcomes to include in studies of a health condition (Boers 
et al. 2014)—can also promote consistency across studies 
and better interpretation of multiple results within studies 
(e.g., ADOPT standards for obesity) (MacLean et al. 2018). 
Nutritional epidemiology will benefit when individual 
researchers willingly commit to a degree of similarity across 
studies, such as harmonizing experimental definitions and 
measures of exposures of interest.

Nutritional epidemiology must also communicate the lim-
itations of approaches more clearly and for a broader audience. 
Traditional news outlets, social media, and others over-interpret 
weak evidence shared by researchers, journals, and institutions’ 
press offices (Brown, Bohan Brown, and Allison 2013). The 
spread of conflicting information itself may be problematic 
by making future communications about nutrition and health 
difficult to accomplish (Clark, Nagler, and Niederdeppe 2019). 
Here, too, nutrition is not unique (Selvaraj, Borkar, and Prasad 
2014; Haber et al. 2018). Fortunately, a growing number of 
investigators in nutrition and related fields are not only moti-
vated, but also well-positioned to bring about each of these 
much-needed reforms.

Discussion

Should such widespread reforms finally begin to take hold, 
there may be winners and some “losers” in the short term. 
For instance, academicians making a switch from inexpen-
sive, easily implemented observational study methods to a 
mix of stronger, more intensive methods may find them-
selves with fewer opportunities to publish and fewer 
awarded grants, particularly during the transition. But, 
over the long term, the field of nutritional epidemiology 
would have much to gain. Bringing nutritional epidemiol-
ogy into the realm of more rigorous science would boost 
the discipline’s credibility. It could also help to further 
strengthen the field by attracting top, new talent. And 
employing stronger study designs—including a mix of more 
accurate measures and analyses and more transparent 
reporting overall—would add value to science as a whole. 
Armed with more trustworthy results, health care providers 
and policymakers potentially could make a real and more 
lasting impact on public health.

Accomplishing such sweeping change will take dedication, 
time, and patience, but seeking allies with shared interests 
could help to facilitate nutritional epidemiology’s transition. 
Investigators could take a multi-disciplinary approach, with 
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nutritional epidemiologists leveraging the expertise of engi-
neers, computational analysts, geneticists, and other outside 
investigators. Such multi-disciplinary collaboration could 
engender study designs that are not only more rigorous but 
also more creative.

Academic journal editors, editorial boards, and peer 
reviewers can also help drive essential changes to nutritional 
epidemiological investigation. They can choose to elevate 
the visibility of more complex studies that make clear con-
tributions to science. They can also enact journal-wide pol-
icies requiring study reproducibility, design preregistration, 
the availability of data repositories, rigorous methods, and 
more. Both seasoned investigators and those who are new 
to the field will be incentivized to apply greater scientific 
rigor to their research efforts. Meanwhile, academicians fail-
ing to adapt to journal changes in policy risk being left out 
of the literature.

By signaling that they, too, demand more scientific rigor, 
grant-funding agencies could act as drivers of change. 
Agencies could request specific project types that incorporate 
the stronger designs, measurements, analyses, and reporting 
recommendations outlined herein.

Taking on so much change is never easy. But neither is 
this particular field of study. As author Stuart Ritchie notes:

Rather like psychology, nutritional epidemiology is hard. An 
incredibly complex physiological and mental machinery is 
involved in the way we process food and decide what to eat; 
observational data are subject to enormous noise and the vaga-
ries of human memory; randomised trials can be tripped up by 
the complexities of their own administration… . Perhaps the 
very scientific questions that the public wants to have answered 
the most—what to eat, how to educate children… and so on—
are the ones where the science is the murkiest, most difficult, 
and most self-contradictory. All the more reason that scientists 
need to take more seriously the task of sensibly communicating 
their findings to the public. (Ritchie 2020)

And all the more reason to give more than lip service 
to the need for reform. It is time to act—to introduce, teach, 
promote, and normalize stronger methods of study—and 
time to elevate nutritional epidemiology to the highest 
standard.
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