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Am J Physiol Gastrointest Liver Physiol 296: G735-G739, 2009. First
published February 12, 2009; doi:10.1152/ajpgi.90708.2008.—The in-
cretin hormones, glucagon-like peptide-1 (GLP-1) and glucose-depen-
dent insulinotropic polypeptide (GIP), play an important role in glucose
homeostasis in both health and diabetes. In mice, sucralose, an artificial
sweetener, stimulates GLP-1 release via sweet taste receptors on en-
teroendocrine cells. We studied blood glucose, plasma levels of insulin,
GLP-1, and GIP, and gastric emptying (by a breath test) in 7 healthy
humans after intragastric infusions of /) 50 g sucrose in water to a total
volume of 500 ml (~290 mosmol/l), 2) 80 mg sucralose in 500 ml
normal saline (~300 mosmol/l, 0.4 mM sucralose), 3) 800 mg sucralose
in 500 ml normal saline (~300 mosmol/l, 4 mM sucralose), and 4) 500
ml normal saline (~300 mosmol/l), all labeled with 150 mg '3C-acetate.
Blood glucose increased only in response to sucrose (P < 0.05). GLP-1,
GIP, and insulin also increased after sucrose (P = 0.0001) but not after
either load of sucralose or saline. Gastric emptying of sucrose was slower
than that of saline (¢so: 87.4 = 4.1 min vs. 74.7 = 3.2 min, P < 0.005),
whereas there were no differences in tso between sucralose 0.4 mM
(73.7 £ 3.1 min) or 4 mM (76.7 = 3.1 min) and saline. We conclude that
sucralose, delivered by intragastric infusion, does not stimulate insulin,
GLP-1, or GIP release or slow gastric emptying in healthy humans.

THE INTERACTION OF NUTRIENT with the small intestine plays an
important role in the regulation of appetite, energy intake and
glucose homeostasis. For example, the suppression of energy
intake induced by small intestinal fat infusion is much greater
than that in response to an equivalent intravenous fat load (46).
Exposure of the small intestine to nutrients is also associated
with feedback inhibition to slow the rate of gastric emptying
(4, 20). Both the slowing of gastric emptying and suppression
of appetite are mediated by the secretion of gastrointestinal
hormones, including glucagon-like peptide-1 (GLP-1) (26, 40),
the release of which is strongly stimulated by carbohydrate
(23). GLP-1 is one of the two known “incretin” hormones
that stimulate glucose-dependent insulin release (10). In
healthy humans, GLP-1 and glucose-dependent insulino-
tropic polypeptide (GIP) account for at least 50% of the
postprandial insulin response (42). GLP-1 in pharmacological
doses also inhibits glucagon secretion, slows gastric emptying,
and suppresses appetite, leading to weight loss in the long term
(31). GLP-1, but not GIP, has preserved insulinotropic effects
in patients with type 2 diabetes (30). Therefore, the GLP-1

analogs, such as exenatide and liraglutide, and enzyme dipep-
tidyl peptidase IV inhibitors that enhance circulating concen-
trations of active GLP-1, such as sitagliptin, have been devel-
oped for therapeutic use (2, 12).

The detection system for sweet taste on the tongue has been
established for a decade. Sweet tastants are detected by G
protein-coupled receptors (GPCR) of the TIR family, of which
T1R2 and TIR3 receptors heterodimerize to form broadly
tuned sweet taste receptors. TIR2+TIR3 couples to a G
protein, gustducin, and, in turn, to the transient receptor po-
tential ion channel TRPMS (39). It has recently been estab-
lished that the «-subunit of gustducin, a-gustducin, is ex-
pressed in the mucosa of the murine gastrointestinal tract (34,
44). Expression of a-gustducin is evident throughout the
mouse small intestine and, among several cell types, appears to
colocalize with GLP-1-secreting L cells. The sweet taste re-
ceptor molecules T1R2, a-gustducin, and TRPMS have now
been shown to also be expressed in the human small intestinal
mucosa (43).

Artificial sweeteners have been used to replace carbohydrate
in the management of diabetes and obesity (1). Sucralose is a
noncaloric sweetener derived from sucrose and is ~600 times
sweeter. Although sucralose (1-5 mM) has been shown to
stimulate GLP-1 from human L cells in vitro, in a concentra-
tion-dependent manner (21), it is not known whether this effect
occurs in vivo. A report that long-term (3 mo) dietary supple-
mentation with sucralose (667 mg daily) did not alter glycated
hemoglobin in patients with type 2 diabetes (19) argues against
a significant effect. However, there is a lack of data about the
effects of sucralose on gastric emptying or GLP-1 release in
either animals or humans.

The aims of our study were to evaluate the effects of
sucralose at a concentration chosen to match the sweetness of
a sucrose load (0.4 mM) and at a much higher concentration (4
mM), in the range shown to stimulate GLP-1 release from a
human enteroendocrine cell line in vitro, on gastric emptying,
GLP-1, GIP, insulin, and blood glucose concentrations in
healthy subjects.

MATERIALS AND METHODS
Subjects

Seven healthy subjects (age 24 = 2 yr; body mass index 21.6 = 1.2
kg/m?) were studied. None had a history of gastrointestinal disease,
was taking medications known to affect gastrointestinal motility or
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appetite, was a smoker, or habitually consumed more than 20 g of
alcohol per day. The study protocol was approved by the Royal
Adelaide Hospital Research Ethics Committee, and each subject
provided written, informed consent before taking part. The number of
subjects was based on power calculations derived from our previous
work (15).

Protocol

Each subject attended the Discipline of Medicine at the Royal
Adelaide Hospital at ~0830 h after an overnight fast (14 h for solids,
12 h for liquids) on four occasions, each separated by 3-7 days.
Women were studied in the follicular phrase of the menstrual cycle.
On each study day, a catheter (external diameter ~3 mm) was
introduced into the stomach via an anesthetized nostril. Its intragastric
position was verified by rapid injection of 10 ml air and auscultation
over the upper abdomen. An intravenous cannula was inserted into a
forearm vein to allow repeated blood sampling. All subjects received
an intragastric infusion, over 3 min ( = —3-0 min), of either /) 50 g
sucrose dissolved in water to a total volume of 500 ml (~290
mosmol/l), 2) 80 mg sucralose (Tate & Lyle, Decatur, IL) in 500 ml
normal saline (~300 mosmol/l, 0.4 mM sucralose, equivalent sweet-
ness to sucrose), 3) 800 mg sucralose in 500 ml normal saline (~300
mosmol/l, 4 mM sucralose), or 4) 500 ml normal saline (~300
mosmol/l), in randomized, single-blind fashion. All of the infusates
were labeled with 150 mg '3C-acetate, and breath samples were
collected immediately before and every 5 min after intragastric infu-
sion in the first hour and every 15 min for a further 3 h (7). Blood was
sampled immediately before the infusion (+ = —3 min), and at t =
0, 5, 15, 30, 60, 90, 120, 150, 180, and 240 min for measurement
of blood glucose and plasma GLP-1, GIP, and insulin. After 240
min, the nasogastric catheter and intravenous cannula were re-
moved, and the subject was offered lunch and then allowed to leave
the laboratory.

Gastric emptying. '*CO, enrichment in the breath samples was
measured by mass spectroscopy (ABCA 20-20 mass spectrometer;
Europa Scientific, Crewe, UK) to determine the percentage '*CO»
recovery per hour and the cumulative percentage of '*CO, recovery
over 4 h (7). The gastric half-emptying time (#s0) and gastric
emptying coefficient (GEC) were calculated as measures of the
gastric emptying rate (27). Breath tests using the '*C acetate label
have been validated against scintigraphy for the measurement of
liquid gastric emptying (5, 7).

Blood glucose and plasma GLP-1, GIP, and insulin concentrations.
Blood glucose concentrations were determined immediately using a
portable glucometer (Medisense Precision QID; Abbott Laboratories,
Bedford, MA). The remainder of each blood sample was placed in a
prechilled EDTA tube containing 400 kIU aprotinin (Trasylol; Bayer
Australia, Pymble, Australia) per liter of blood and then centrifuged at
3,200 revolution/min for 15 min (4°C). Plasma was separated and
samples were stored at —70°C for subsequent analysis (26). Total
plasma GLP-1 was measured by radioimmunoassay (GLPIT-36HK;
Linco Research, St. Charles, MO). The sensitivity was 3 pmol/l, and
the interassay coefficient of variation (CV) was 9.2%. Total plasma
GIP was measured by radioimmunoassay (41). The sensitivity was 2
pmol/l, and both the intra- and interassay CVs were 15%. Plasma
insulin was measured by solid-phase, two-site chemiluminescent im-
munometric assay (Immulite 2000 Insulin; Siemens Medical Solu-
tions Diagnostics, Los Angeles, CA). Sensitivity was 2 mU/l, intra-
assay CV was 3.9%, and interassay CV was 5.0%.

Statistical Analysis

Blood glucose and plasma hormone concentrations were analyzed
by repeated-measures ANOVA (SuperANOVA; Abacus Concepts,
Berkeley, CA) with time and treatment as factors. tso and GEC were
also analyzed by ANOVA. Post hoc means comparisons were per-
formed in the event of a significant treatment X time interaction.

SUCRALOSE, GASTRIC EMPTYING, AND INCRETIN RESPONSE

Statistical significance was accepted at P < 0.05, and data are
presented as means = SE.

RESULTS

The study was well tolerated by all subjects. Fasting blood
glucose concentrations and plasma GLP-1, GIP, and insulin
concentrations did not differ between the four study days.

Gastric Emptying

There was a significant treatment effect for 750 between the
four study days (P < 0.005). tso was longer for sucrose than
saline (87.4 = 4.1 min vs. 74.7 = 3.2 min; P < 0.005),
whereas there were no differences in 759 between sucralose at
0.4 mM (73.7 = 3.1 min) or sucralose at 4 mM (76.7 = 3.1
min) and saline. Accordingly, GEC was less for sucrose com-
pared with saline (4.3 = 0 vs. 4.7 = 0.1; P < 0.0005), whereas
it was not different between sucralose 0.4 mM (4.8 £ 0.1) or
4 mM (4.6 = 0.1) and saline.

Blood Glucose Concentrations

As seen in Fig. 1A, there was a rise in blood glucose after
sucrose administration (P = 0.0001), which was evident from
t = 5 min and decreased progressively after about 30 min,
falling below baseline levels at 90 min. There was a significant
treatment X time interaction (P = 0.0001), with the blood
glucose concentration being greater after sucrose (P < 0.05)
between 5 min and 60 min and lower between 90 min and 120
min (P < 0.05) compared with saline infusion. There were no
significant differences in blood glucose between either load of
sucralose and saline.

Plasma Insulin

Figure 1B demonstrates that plasma insulin rose promptly
after sucrose administration (P = 0.0001), with a maximum
response at 15 min, and then fell to basal levels by = 240 min.
Insulin concentrations were markedly greater after sucrose
infusion between 5 min and 120 min compared with those after
saline infusion (P < 0.05). Neither sucralose load stimulated
an insulin response.

Plasma GLP-1

As seen in Fig. 1C, there was a marked increase in plasma
GLP-1 after sucrose administration (P = 0.0001), which was
maximal at 15 min followed by a subsequent decline to
baseline levels by + = 60 min. The GLP-1 level was greater
after sucrose between 5 and 15 min, and less at r = 90 min,
compared with saline (P < 0.05). There was no difference
between sucralose at 0.4 mM or 4 mM and saline.

Plasma GIP

Figure 1D shows that there was a prompt rise in plasma GIP
after sucrose infusion (P = 0.0001). After a peak between 5-15
min, GIP declined progressively to baseline values by 240 min.
Plasma GIP was greater between 5 min and 150 min after
sucrose, compared with saline infusion (P < 0.05). There was
no difference between sucralose at 0.4 mM or 4 mM and saline.

DISCUSSION

This study is the first to evaluate the incretin, insulin, and
glycemic responses to sucralose administration and to deter-
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mine whether this artificial sweetener is capable of generating
feedback in the small intestine that slows gastric emptying in
healthy humans. In contrast to administration of sucrose, su-
cralose given by intragastric infusion had no effect on GLP-1,
GIP, or insulin secretion or gastric emptying, both at a con-
centration chosen to match the sweetness of the sucrose load
(0.4 mM) and at a much higher concentration (4 mM), in the
range shown to stimulate GLP-1 release from a human en-
teroendocrine cell line in vitro (21). This is consistent with
reports that sucralose failed to influence plasma glucose or
serum C-peptide in patients with type 1 and 2 diabetes (29) and
that the noncaloric sweetener, stevioside, failed to stimulate
GLP-1 or GIP in patients with type 2 diabetes (16). Similarly,
there was no effect of sucralose on fasting blood glucose or
glycated hemoglobin levels over 3 mo in patients with type 2
diabetes (19).

We administered sucralose by intragastric infusion in this
study, rather than infusing directly into the small intestine.
However, since sucralose is stable in acidic solution (<1%
hydrolysis at pH 3 after 1 yr, Ref. 18), it is unlikely that the
properties of sucralose would have been altered by exposure to
gastric acid before emptying into the small intestine. We do not
believe that giving the test solution orally, rather than by
intragastric infusion, would have altered the outcome because
there is no evidence for an effect of the cephalic phase of
digestion on incretin hormone release (3). We selected a higher
concentration of sucralose that was toward the upper end of the
effective range in vitro (21) and a lower concentration that
approximated that used in the food industry and observed no
effect of sucralose at either concentration. It should be recog-
nized that, although we cannot be absolutely certain that these

L T T T T T T 1
30 60 90 120 150 180 210 240
Time (min)

concentrations were too high or too low to stimulate a response
(21), it would not have been feasible to undertake additional
study days in the same volunteers, particularly given the
volume of blood sampled. We also did not measure the con-
centration of sucralose within the small intestinal lumen, but,
given that the emptying of both sucralose solutions from the
stomach was rapid, we would not anticipate a substantial
difference from the concentrations administered intragastri-
cally.

The presence of carbohydrate in the small intestine is a well
established stimulus for GLP-1 and GIP secretion, leading to
glucose-dependent insulin secretion from the (3-cells and feed-
back that regulates gastric emptying (24). Direct exposure of
carbohydrate to the mucosa of the small intestine appears to be
an essential requirement for GLP-1 and GIP secretion (10), and
the magnitude of the former is dependent on the rate of
delivery of glucose into the small intestine (35). Elements of
the sweet taste receptor present in the tongue have recently
been identified in both rodent (34, 44) and human (43) small
intestine. The T1R2+3 heterodimer should, by analogy to the
tongue, respond to various sweet-tasting molecules as diverse
as sucrose, saccharin, acesulfame K, and sucralose (32, 47).
Furthermore, it has been demonstrated in two mouse enteroen-
docrine cell lines, GLUTag and STC-1, that sweet taste recep-
tors are colocalized with GLP-1 and GIP (22, 37) and that
sucralose stimulates secretion of GLP-1 and GIP from
GLUTag cells (28). Mice that lack a-gustducin show markedly
defective GLP-1 secretion in response to glucose (21). Further-
more, the human L cell line, NCI-H716, expresses a-gustducin
and several other taste-signaling elements (21), and GLP-1
release from NCI-H716 cells is stimulated by glucose, sucrose,
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and sucralose and blocked by the sweet receptor antagonist,
lactisole, or siRNA for a-gustducin (21). However, until this
study, there has been no information available regarding ef-
fects of artificial sweeteners on GLP-1 release in humans in
vivo. Moreover, even in mice, only a minority (8%) of L cells
coexpress a-gustducin (44); the potential stimulus for GLP-1
release from the remainder is unclear. It should also be noted
that major differences between species are evident with regards
to incretin hormone release. For example, fructose stimulates
the release of GLP-1 in rats (38) and humans (36) but not in
dogs (41).

Although sucrose, sucralose, and other sweet tastants all
bind to the TIR2+3 heterodimer, they do not act in identical
fashion, at least on the tongue. For example, sucrose binds with
a different affinity from sucralose (33), whereas absence of
TIR3 receptors in knockout mice completely abolishes any
taste preference for sucralose but merely diminishes the pref-
erence for sucrose (9). Moreover, functional brain imaging in
humans indicates differences in central activation between
sucrose and identically sweet sucralose solutions (13).

Absorption of monosaccharide may be necessary for GLP-1
or GIP release; this seems to be true for GIP at least (45) since
rapidly and slowly digestible carbohydrates differ considerably
in their ability to stimulate GIP secretion (45), whereas phlo-
ridzin, an inhibitor of the sodium-glucose cotransporter 1
(SGLT1) glucose transporter, suppresses GIP release (14).
Absorption of monosaccharide via SGLT1 has also been sug-
gested as a trigger for GLP-1 secretion from L cells (17).

We have not examined whether sucralose has any effect on
carbohydrate absorption in humans. Supplementation of the
diet with sucralose increases SGLTI mRNA and glucose
absorption in wild-type mice but not in TIR3 or a-gustducin
knockout mice (28). Furthermore, sucralose, acesulfame potas-
sium, and saccharin stimulate glucose absorption in rats by
enhancing apical insertion of GLUT2 (25). This raises the
question as to whether the combination of an artificial sweeter
with carbohydrate could have a synergistic effect on incretin
release, even if sucralose has no effect alone, and might
account for the observation that chronic exposure of mice to
oligofructose (a nondigestible sugar) enhances GLP-1 secre-
tion in response to a high-fat diet (6).

It should also be recognized that GPCR other than T1R2
have recently been linked to incretin hormone release. For
example, GPR40 and GPR119 are both GPCR that may stim-
ulate incretin release in response to fatty acids, and agonists of
these receptors could be therapeutically useful in diabetes (8).
Furthermore, sweet taste sensors other than T1R2, such as
SGLT3 (11), could be important in the detecting carbohydrate
in the small intestine.

In conclusion, we have not been able to demonstrate that
sucralose given by intragastric infusion stimulates GLP-1 or
GIP release in humans or elicits a feedback response to slow
gastric emptying. This implies that artificial sweeteners may
have no therapeutic benefit in the dietary management of
diabetes, other than as a substitute for carbohydrate.
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