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Objective 

Poly-unsaturated fatty acid (PUFA) supplements have been trialled as a treatment for a number of conditions, and 

produced a variety of results.  This variety is ascribed to both the supplements, often comprising mixtures of fatty 

acids and to different effects in different organs.  Here, we tested the hypothesis that supplementation of individual 

PUFAs has diverse system-level effects that are dependent on the molecular structure of the PUFA.  

 

Methods 

We undertook a network analysis using Lipid Traffic Analysis to identify both local and systems-level changes in lipid 

metabolism using publicly available lipidomics data from a mouse model of supplementation with FA(20:4n-6), 

FA(20:5n-3) and FA(22:6n-3) ; arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, respectively.  Lipid 

Traffic Analysis is a new bioinformatics tool that uses the spatial distribution of lipids to pinpoint changes or 

differences in control of metabolism, thereby suggesting mechanistic reasons for differences in observed lipid 

metabolism. 

 

Results 

There was strong evidence for changes to lipid metabolism being dependent on the structure of the supplemented 

PUFA.  Phosphatidylcholine and triglycerides showed a change in the variety more than the number of variables, 

whereas phosphatidylethanolamine and phosphatidylinositol showed considerable change in both which variables 

and the number of them, in a highly PUFA-dependent manner.  There was also evidence for changes to endogenous 

biosynthesis of fatty acids and to both elongation and desaturation of fatty acids. 

 

Conclusions 
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These results show that the full biological impact of PUFA supplementation is far wider than any single-organ effect 

and implies that supplementation and dosing with PUFAs requires a system-level assessment.  

 

Introduction 

Dietary interventions are an attractive means for treating metabolic disease.  They are drug-free, pain-free and are 

easy to personalise.  Foods are typically a mixture of a variety of molecular species across several nutrient groups, 

meaning that with judicious use of foods, several nutrients can be administered in one intervention.  This can be 

helpful in studying and treating deficiencies such as those of poly-unsaturated fatty acids (PUFAs).  Foods such as fish 

or plant oils comprise a mixture of PUFAs, which can be used to meet the dietary needs of humans. Several PUFAs 

are considered essential as these cannot be made either de novo or from other FAs endogenously, and these PUFAs 

can be administered in excess and at once, and the effects studied at once.  Indeed, such mixtures have been used to 

study effects in several different organs in Randomised Controlled Trials (Table 1).     

 

These studies (Table 1) show that the administration of PUFA mixtures on a population often aimed one organ in 

particular.  Specifically, the evidence from these trials suggests that FA(22:6n-3) has an important role in a number of 

conditions, with FA(20:5n-3) and FA(18:3n-3) important in others.  The evidence from RCTs also shows that there are 

differences between organs.  For example, there is no effect of FA(20:5n-3) in reducing heart rate but it does 

improve mood disorders and reduces risk of stroke.  This shows that several organs are affected simultaneously, 

although presently there are no studies that measure the effects of PUFAs simultaneously across all these different 

outcomes in the same cohort and at a system-wide level.  Evidence from lambs shows that PUFA supplementation 

using flaxseed leads to uneven accumulation of FA(18:3n-3) in muscle, liver and heart, and FA(20:5n-3) and 

FA(22:6n-3) accumulated in liver and kidney [1], suggesting that the traffic of FAs in mammals may be controlled.  It 

is expected that the traffic and accumulation of PUFAs would also vary in humans.  PUFA metabolism may also be 

shaped as dietary intake of this nutrient class differs by geographical region [2].  One negative effect has been 

suggested with PUFA supplementation. PUFA deficiency can reverse the effects of alcohol on mitochondrial energy 

metabolism[3], which complicates the use of PUFAs for treating  liver related disease [4; 5].   Lastly, it is generally 

assumed that there is an interdependency between organs for lipid metabolism. 

 

Organs such as the liver, spleen, heart etc all absorb and/or secrete different FAs into the circulation and thus all 

contribute to the supply of FAs in circulo [6-9].  Studies show that for FA metabolism there is interdependency 

between liver-intestine-heart [6], liver-adipose-muscle [7], liver-adipose-testes [8] and across the CNS [9], and thus 

hints at the presence of a metabolic network whose activity is shaped by  factors such as dietary intake.    Thus the 

effects of supplementing PUFAs not only imply that several organs can be affected simultaneously but also that 

there are general, systemic effects dependent on inter-organ traffic.  However, a full systemic analysis of PUFA 

supplementation has not yet been carried out.  Furthermore, the questions of which PUFAs have what effect(s) and 

where, whether unintended or undesired effects can be avoided and how rapidly and specifically the desired effect 

can be achieved on the target organ remain unresolved.  The evidence for several possible effects of PUFAs, on 
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several organs and throughout a system motivated us to investigate the relationship between supplementation of 

individual PUFAs and changes to system-wide lipid metabolism.   

 

We therefore tested the hypothesis that supplementation of individual PUFAs affects several organs simultaneously 

and has system-level effects that are dependent on the molecular structure of the PUFA. Publicly available lipidomics 

data collected from a mouse model of dietary supplementations of FA(20:4n-6), FA(20:5n-3) and FA(22:6n-3) 

(arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid, respectively) [10] was used to investigate the 

particular effects of each PUFA throughout the organism.  Fortunately, as there is no evidence for increased FA 

oxidation on supplementation with PUFAs [11], supplementation reflects changes in control of metabolism rather 

than oxidation.   

 

In order to identify and characterise systemic effects, we used a Lipid Traffic Analysis (LTA) [12-14].  The network of 

tissues used in the LTA of the mouse model of PUFA supplementation network used in the present study is shown in 

Fig. 1.  This network shows several aspects of lipid metabolism, including storage, biosynthesis, structure and 

oxidation.  LTA is a relatively new tool for analysing metabolomics data that uses the distribution of metabolites to 

determine how the control of metabolism differs between groups.  Several studies have used LTA for determining 

the effects of dietary intake, including finding that paternal nutritional programming is associated with changes in 

the control of lipid traffic [12] and obese-gestational diabetes (GDM) is associated with altered timing of changes in 

lipid metabolism in pregnancy[13] and changes in lipid metabolism that outlast pregnancy [14].   

 

For example, LTA has also shown that lipids found only in the liver of post-weaning dams who had had GDM were 

also found in the heart of post-weaning dams who did not develop GDM[14].  This difference in metabolite 

distribution must mean the two systems were being controlled differently.  Although the difference could be 

effected through several possible mechanisms (absorption, oxidation, transport, etc.) only by using LTA was it 

possible to show that accumulation of lipid molecules in the livers of obese-GDM post-weaning dams was matched 

by an appearance in other compartments in the control group, representing transport.  These changes in the control 

of lipid metabolism offer an entirely different type of analysis to other approaches such as biomarker discovery or 

tissue-tissue comparisons.  Indeed, the results described above are not obtainable through tissue-tissue 

comparisons.  However, tissue-tissue comparisons are useful especially for assessing local effects, and these have 

been done for PUFA supplementation [10].  This provided a valuable insight into the effects or PUFA 

supplementations within each organ/compartment, however the use of LTA as a system-level analysis, will plot the 

metabolism through a system, pinpointing where metabolic changes occur (e.g. transport from the liver into the 

circulation) and thus providing mechanistic explanations for changes in the behaviour of the system, something not 

achieved in the original study. LTA therefore deepens biomarker discovery results as it is capable of contextualising 

and even identifying roles for metabolites both within organs and through the system.  This makes LTA an ideal tool 

to identify and characterise both systemic and local effects of nutrients known to modulate metabolism in several 

organs.    
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It is important to test this hypothesis using a system-level analysis because effects of nutrient supplementation over 

the whole organism are inevitable but poorly understood, and useful to know so that deficiencies can be treated 

accurately.  The current limited understanding makes judging the dose and timing of a given supplement difficult.  

 

Target organ FA supplemented Species Result Ref 

Liver FA(22:6n-3) Human (obese, NAFLD 

diag.) 

Decreased liver fat [4]* 

Liver Mixed Human (obese, NAFLD 

diag.) 

Improved NAFLD [5]* 

Liver Deficient in PUFAs Piglets Protection of eFA-containing PEs [15] 

Lungs n-3 and fish oil Human (smokers) Reduced emphysema and chronic 

bronchitis, and low spirometry values 

[16]* 

Heart FA(22:6n-3) and 

FA(20:5n-3) 

Human Reduced heart rate with FA(22:6n-3) but 

not FA(20:5n-3) 

[17]* 

CVS Fish oil Human Effects unclear, may be some benefit [18]* 

CVS FA(22:6n-3) Human Can improve risk of factors for CVD post-

menopause 

[19] 

CVS FA(20:5n-3, 22:6n-3) Human Decreased hospitalisations with CHD [20]* 

Circulation FA(18:3n-3)** Human (infant) Some, but not much, FA(22:6n-3) is made 

from FA(18:3n-3) 

[21] 

Circulation Fish oil Human (infant, 

malnourished) 

Increase in circulating PUFAs but no 

short-term effects on development 

[22] 

Brain, liver, heart, 

lung 

Mixed/fish oils Rats No increase in oxidation [11] 

Skin PUFA intake Human (transplant recip.) Reduced risk of squamous cell carcinoma [23] 

Skin FA(18:3n-3)** intake Human (transplant recip.) Reduced risk of basal cell carcinoma [23] 

CNS FA(20:5n-3, 22:6n-3) Human Lower risk of stroke [20]* 

CNS FA(20:5n-3) Human Improvement in mood disorders [24]* 

CNS FA(22:6n-3) Human Reduced cognitive decline [24]* 

CNS LPC(22:6n-3) Mice Improves memory [25] 

CNS Fish oil Human (healthy adults) little effect on mood or cognition [26] 

CNS (ADHD) N/A Human high ratio of FA(20:4) to FA(22:6) assoc. 

with ADHD 

DHA assoc. with behaviour not cognition 

[27] 

CNS (Alzheimer’s) N/A Human loss of FA(20∶4, 22∶4, 22∶6) in PE, increase 

in FA(14:0, 16:0, 18:0) in PE. PC stable 

[28] 

Table XX.  Summary of meta-analyses and original research investigating the relationship between FA supplementation or 

concentration and physiological or clinical effects.  Fish oil typically comprises FA(22:6n-3), FA(20:5n-3) but no FA(20:4n-6).  

*Meta-analysis; **α-Linolenic acid; ADHD, attention deficit hyperactivity disorder; CHD, coronary heart disease; CNS, central 

nervous system; CVS, cardio-vascular system; NAFLD, non-alcoholic fatty liver disease. 

 

 

Materials and Methods  

Animal model and Lipidomics data.  The animal model used to generate the lipidomics data were C57BL/6J males, 

fed the modified diet for 14d from around 10w[10].  Lipidomics data for this study were collected using LCMS and 

made publicly available through OA publication of the original study[10].  Up to 1200 lipid variables were identified 

in liver, brain, heart, lung, adipose, spleen, kidney, small intestine, vastus muscle and in plasma.  Lipidomics data 

were reformatted for the present study, but not reprocessed. 
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Lipid Traffic Analysis.  The analysis of the present study was based on a known map of the tissues as a 

biological/metabolic network (Fig. 1).  Categories for the Switch Analysis were A, B and U lipids[12]. A-type lipids 

were found throughout the system, U-type lipids were found in only one compartment and B-type lipids were found 

in pairs of adjacent compartments, such as liver-serum.  These lipid types show that, for example, a lipid may be 

found throughout the system in one group (an A-type lipid) but may only found in part of the network in another 

(e.g. B-type for liver-serum, serum-heart and serum-brain).  U-type lipids are isolated, implying they are synthesised 

locally and not transported.  Categorisation of lipids in this way shows how transport, accumulation and endogenous 

biosynthesis differs between phenotypes, and, importantly, where this occurs.  

 

Jaccard-Tanimoto Coefficients (JTCs, J) and associated p values were used as a non-parametric measure of the 

distinctions between lipid variables associated with phenotype(s).   These were used to calculate the overlap 

between the identities of the variables and the probability that this occurred by random chance, respectively.  

Where the probability is 1.0, the variables in one group all appear in the other group.  The p value associated with 

each J represents the probability that the difference between the lists of variables for the two phenotypes occurred 

by random chance.  It represents both the number of variables only found in either of the two groups and the order 

of the binary list. When the p is below 0.5 there are some shared variables, but at least one variable that only 

appears in one each of the two groups.  When the probability is 0, there is no overlap between the lists of variables 

at all.  Variables were regarded as present if they had a signal strength >0 in ≥66% of samples per group.  The original 

data was reformatted for LTA and can be found in Supplementary Information (SI2 -- Original data formatted for 

LTA).  The Switch Analysis outputs from the LTA were combined into one document and also included in the 

Supplementary Information (SI3 - Switch analysis (PE, PC, TG, PI)).   

 

Statistical methods.  Univariate and bivariate statistical calculations were done in Microsoft Excel 2016.  Graphs 

were prepared in Excel 2016 or OriginLab2018.  The activity of enzymes that modify the structure of FAs can be 

inferred from their activity index, calculated from the ratio of the abundance of the product and substrate of that 

reaction [29; 30].  Lipid Traffic Analysis v2.3 was used for this study[13].  The code was executed in RStudio(v1.2.5x) 

using R v3.9.  The full code for Lipid Traffic Analysis v2.3 used in this study can be found in the Supplementary 

Information file 1 and via Github (https://doi.org/10.5281/zenodo.5499760). 

 

Results & Discussion 

Phospholipid traffic is modulated by supplementation with PUFAs 

LTA was used in this study to investigate the consequences of PUFA supplementation across all lipid classes.  We 

began with the two most abundant phospholipids, phosphatidylethanolamine (PE) and phosphatidylcholine (PC).  

LTA begins by categorising lipids into A-, B- or U-types, ones that were found in all compartments, in adjacent 

compartments and only in one compartment, respectively (see Methods).  74 PE species (configurations) were 

detected across the 10 tissues, with only 6 found as B-type lipids (Fig. 2A).  This means that fewer than 10% of PE 

variables were trafficked through the system.  Moreover, nearly half the PE variables were U-type.  This suggests 

that PE is configured locally from only a small number of PEs (B-type PEs).  Around a quarter of PCs were trafficked 
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through the system; 97 PCs were detected across the 10 tissues, with 23 B-type and 44 U-type variables (Fig. 2B).  

This is considerably more than for PE but is consistent with PC’s role as a major structural lipid and also with the 

delivery of PUFAs such as FA(20:4)[31].  Despite there being 4-5 B-type configurations of PE in the control group, 

only PE(16:0/22:6) was found throughout the network on supplementation with FA(20:5n-3) (Fig. 2A).  FA(22:6n-6)-

containing PE is therefore maintained and protected across all tissues, consistent with low-PUFA feeding studies in 

which it was also protected[15].  PE(16:0/22:6) is also found in spermatozoa from a range of mammals, including 

herbivores whose diet is FA(22:6)-poor[32].  The evidence for wide distribution of PE(16:0/22:6) in the present 

analysis, alongside existing evidence of its importance and presence irrespective of dietary intake, shows that the 

control of this lipid must be maintained under all circumstances across the whole system.  LTA shows that the supply 

of this lipid is constant and maintained throughout the system.   

 

Like PE, PC is known to have a key structural role but is also known to be important in the storage and transport of 

FA(20:4)[31].  LTA showed that the supplementation of PUFAs drove several changes in the molecular profile of the 

PC fraction, Fig. 2B.  PC(16:0/20:4) and PC(18:0/20:4) were maintained throughout all compartments with all 

treatments, consistent with the long-established concept that PCs were crucial for the storage and transport of 

FA(20:4)[31].  PC(18:2/20:4) was detected almost throughout the entire control, FA(20:4n-6)- and FA(20:5n-3)-

supplemented systems, but not found at all in FA(22:6n-3)-supplemented mice.  LTA therefore shows that PC’s role 

as a store/transport vehicle for FA(20:4) is system-wide and can be modulated by supplementation with FA(22:6n-3).  

The prominence of FA(20:4) distribution in PC may explain some of the results of PUFA feeding trials in humans.   

 

Feeding of fish oils (high in FA(20:5n-3) and FA(22:6n-3) but typically low in FA(20:4n-6)), has shown neutral or mixed 

effects on cognition in children[33], been associated with poor prosocial behaviour and language skills[34] and 

shown to have little effect on mood or cognition in healthy adults[26].  A study of Attention-Deficit Hyperactivity 

Disorder found that the plasma concentration of FA(20:4) and FA(22:6) were positively correlated with cognition, 

and a high ratio of FA(20:4) to FA(22:6) was the most important for behaviour[27].  A study of neurodegeneration 

found loss of both FA(22:6) and FA(20:4) in the CNS in Alzheimer’s disease[28].  This suggests that a good supply of 

both FA(20:4) to FA(22:6) is associated with optimum CNS activity, which is consistent with around 12% of the dry 

mass of the human brain being FA(20:4) and FA(22:6) together, and evidence for specific transporters of both 

FA(20:4n-6) and FA(22:6n-3) into the CNS[35]. Therefore, supplementation with FA(22:6n-3) and FA(20:5n-3) alone 

will result in a proportional reduction of FA(20:4n-6) and thus potentially a limiting of the positive effect on CNS-

related outcomes.  Evidence from the traffic analysis done in the present study shows that there are at least two 

protected phospholipid isoforms comprising FA(20:4) that are found throughout the system, viz. (PC(16:0/20:4) and 

PC(18:0/20:4). This is expanded when dietary supply of FA(20:4) is higher, with PC(18:2/20:4) being found 

throughout the system, except for adipose, in the FA(20:4n-6) group, appearing to replace other variables, e.g. 

PC(16:0/20:5).  This explains how FA(20:4n-6) is trafficked to reach all parts of the body and even to the CNS where it 

likely has a under-appreciated developmental role. 
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Other lipid pathways were also affected. There were 32 configurations of PI, of which 13 were B-type and 15 U-type, 

Fig. 3A.  Thus 28/32 variables were U- or B-type variables. The number of configurations of PI increased on 

supplementation with FA(20:5n-3) and more so with FA(22:6n-3), and was generally lower with FA(20:4n-6), which 

contrasts with PE in which the control group showed the greatest variety of B-type variables, with the FA(20:5n-3) 

supplement group showing the narrowest variety.  PE and PI provide contrasting but complimentary routes for 

distribution of PUFAs.  There was also commonality between PI and PE; PI(18:1/18:2) was found in the small 

intestine, spleen, liver and heart of control mice but was not found in supplemented mice at all, similar to PE. 

PE(16:0/18:2) was not found on supplementation and PE(18:0/18:2) was lost from all but two of the compartments 

in the supplemented groups.   These changes across phospholipid pathways demonstrate the far reach of PUFA 

supplementation; there are routes for all supplemented PUFAs to all compartments, and at least one derivative, and 

also changes in FA(16:0) and FA(18:2) supply.   

 

PUFA supplementation drives changes to the distribution and supply of energy stored in TGs 

The pattern of alterations in the TGs was similar to those of PC, with little change to the number of variables 

detected but some change to the profile (Fig. 3B).  Changes in the TG composition was noted in all compartments, 

with both B- and U-type TG variables differing in virtually all compartments on supplementation with any of the 

three PUFAs.  This raises the question of which PUFAs were affecting what mechanisms and through which routes, 

e.g. biosynthesis of TG from PC transferred to the liver is a known phenomenon [36], suggesting cross over of FAs 

through this route.   

 

One important contributor to the profile of TGs is endogenous synthesis (de novo lipogenesis, DNL) and thus possible 

changes to the biosynthesis of palmitic acid were tested for.  TG markers for DNL, TG(46:0, 46:1, 48:0, 48:1, 48:2, 

50:1) [37], were largely unchanged in several tissues of the supplementation groups (vastus, adipose, lung, brain, 

small intestine), or lower (spleen, liver, kidney, heart, plasma) in them.  Perhaps the clearest example of reduced 

abundance is the plasma, providing evidence that the supply of DNL variables through the circulation is weaker in all 

supplemented groups (Fig. 4A).   

 

The considerable change in abundance of biomarkers for DNL across much of the system shows that endogenous 

production of palmitic acid is suppressed by supplementation with PUFAs within 14 d of supplementation 

commencing, and thus shows how PUFA-driven suppression of DNL in the liver affects the supply of lipids to other 

tissues.  However, as seen in sheep [1], the magnitude of changes in lipid species reflected the half-life of FAs in 

different organs. In mice FAs have a half-life of around 12-24 h in liver, whereas in adipose it is closer to 14 d [38] 

and 36-40 d in brain [39].  This suggests that while most of the FAs in the system will have been turned over during 

the supplementation period of this model, this occurs only unevenly across tissues.  The half-lives of FAs were 

consistent with the magnitude of the changes observed on supplementation but also with the concept that there is 

evidence that DNL is modulated observable in every tissue.  However, DNL is a complicated process involving a 

number of enzymes in different cell compartments.  In order to deepen the effects of PUFA supplementation on 

endogenous FA metabolism, we also looked at local FA metabolism across the network. 
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Alteration to long-chain FA supply driven by PUFA supplementation  

The activity index of elongases ELOVL2 and 5 on FA(20:5n-3) can be calculated using the ratio between PC(16:0/20:5) 

and PC(16:0/22:5), and PC(18:0/20:5) and PC(18:0/22:5).  ELOVL2/5 activity based on PC(16:0/22:5)/PC(16:0/20:5) 

showed that activity was higher in lung, heart and vastus muscle on supplementation with FA(20:4n-6) but lower on 

supplementation with FA(22:6n-3), Fig. 4B. The supplementation of FA(20:5n-3) makes the measurement of 

ELVOL2/5 activity by this method impossible.  However, the activity ratio calculated from PC(18:0/20:5) and 

PC(18:0/22:5) was unchanged in liver and small intestine after FA(20:4n-6) supplementation, unchanged in lung after 

FA(22:6n-3) supplementation, lower in lung, spleen, serum and kidney after FA(20:4n-6) supplementation and lower 

in kidney, small intestine, lung and liver after FA(22:6n-3) supplementation.  These results are surprising as they 

show not only that the biosynthesis of FA(22:5n-3) was much greater in certain compartments, but also that its 

distribution and synthesis was tightly controlled and was independent of the liver.  Specifically, supplementation of 

FA(20:4n-6) and FA(22:6n-3) leads to an increase in PC(16:0/22:5) in lung, heart and muscle but a decrease in other 

tissues, with no change or a reduction in PC(18:0/22:5) throughout the system.  This suggests first that metabolism 

of PCs is more tightly controlled and more organ specific than expected, and second that when intake is low, PUFAs 

are used to substitute one another.   

 

Leg muscle and spleen in pigs have been found to produce FA(22:5)[40], an observation that is consistent with 

evidence of this FA in several tissues and lipid classes in mice.  Some FA(22:5)-containing lipids were organ-specific in 

mice, PE(18:2/22:5) was only found in the heart and PE(22:5/22:6) was only found in vastus, whereas some 

compartments were pathway-specific, e.g. almost all of the FA(22:5) in the liver was in triglycerides (TGs).  The 

present study therefore suggests that FA(22:5) is produced in at least two separate ways, one resulting in FA(22:5)-

containing TGs mainly in the liver and the other in PLs mainly in muscular tissue.  These results are important 

because they show that some tissues are more independent in FA modification than previously known.  

Furthermore, as FA(22:5) is required for producing protectins and D-series resolvins[41], the evidence for 

biosynthesis of this compound in the lung, kidney, vastus and heart suggests a role for supplementation in the 

resolution of acute kidney and lung injury by resolvins[42],  resolution of acute inflammation in the heart initiated by 

myocardial infarction[43] and the biosynthesis of lipokines in skeletal muscle during and after exercise[44].  These 

results also show that the conversion of FA(20:5n-3) to FA(22:5n-3) on supplementation with FA(20:4n-6) occurs in 

localised areas of the organism (Fig. 4B), with a possible role in controlling inflammation.  

 

The untargeted nature of the systemic LTA also shows how the metabolism of saturated FAs such as FA(22:0) and 

FA(24:0) is modified by supplementation with PUFAs.  In pigs, there is a significant release of FA(22:0) and FA(24:0) 

from lung tissue[40], unlike mice in whom FA(22:0)-containing PCs and PEs were found in the CNS and FA(24:0)-

containing PCs in both the brain and spleen (as PC(24:00/18:01) and PC(24:00/20:04), respectively).  The clear 

difference in the profile of FA(22:0)- and FA(24:0)-containing lipids in mice suggests that saturated long-chain FAs 

were produced independently in at least two places in this model.  Biosynthesis of FA(22:0) and FA(24:0) relies upon 
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ELOVL1[45], suggesting that this enzyme is expressed in the CNS and periphery.  Furthermore, there was almost no 

change in traffic according to PUFA supplementation, suggesting little effect of PUFA on ELOVL1 supplementation. 

 

 

Conclusions 

It is evident from the applications of LTA to lipidomics data from the model of PUFA supplementation reported here 

that there are systemic effects in different pathways as well as different effects in different tissues, due to PUFA 

supplementations.  The hypothesis that system-level and local changes in lipid metabolism were associated with 

PUFA supplementations was therefore correct.  Specifically, these affected different lipid pathways differently, with 

the profile of the PI and PE fractions changing considerably according the PUFA supplement, with more subtle 

reorganisations in PCs and TGs.  Which FAs were made and elaborated was also PUFA-dependent.  This provides a 

mechanistic basis for interpreting results of clinical trials in which PUFAs were administered and shows that all 

tissues are affected by PUFA supplementation.  The present study shows that it is not clear what the therapeutic 

window is or should be for these PUFAs.  These results therefore raise important questions about the relevance of 

PUFA supplementation trials aimed at improving metabolic health, as the metabolic response is tissue-dependent 

and not uniform. The results of this study show that a network analysis is essential for understanding the effects of 

nutrient supplementation on whole organisms as it is the only type of analysis capable of uncovering effects 

throughout the system.   
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Figure captions 

 

Fig. 1.  The mouse model of PUFA supplementation used in the present study. This shows the tissue network of the mouse model of PUFA 

supplementation. The arrows show the metabolic connections between compartments.   

 

Fig. 2.  Traffic analysis of phospholipids in a mouse model of PUFA supplementation.    Panel A, Switch analysis of phosphatidylethanolamine 

(PE) variables.  Panel B, Switch analysis of phosphatidylcholine (PC) variables. Pie charts show the number of variables of the appropriate head 

group in the relevant tissue(s).  Large inset pie charts show the B-type species (lipids found in two neighbouring compartments) whereas U-

type lipids (lipids found only in one compartment) are depicted with smaller pie charts. The Jaccard-Tanimoto coefficients (J) and probability 

(p) values that describe the similarity between sets of variables. Translucent pie charts indicate those in which only the number of variables 

differs between groups.   

 

Fig. 3. Traffic analysis of lipids in a mouse model of PUFA supplementation.  Panel A, Switch analysis of phosphatidylinositol (PI) variables; 

Panel B, Switch analysis of triglyceride (TG) variables.  Pie charts show the number of variables of the appropriate head group in the relevant 

tissue(s).  Large inset pie charts show the B-type species (lipids found in two neighbouring compartments) whereas U-type lipids (lipids found 

only in one compartment) are depicted with smaller pie charts. The Jaccard-Tanimoto coefficients (J) and probability (p) values that describe 

the similarity between sets of variables. Translucent pie charts indicate those in which only the number of variables differs between groups. 

 

Fig. 4. Modifications to FA metabolism associated with supplementation with PUFAs.  Panel A, Abundance of TGs associated with de novo 

lipogenesis [37], TG(46:0, 46:1, 48:0, 48:1, 48:2, 50:1), shown as the mean with 1.5 IQR.  Panel B, the activity of elongases ELOVL2/5 on 

FA(20:5) expressed as the ratio of the abundance of PC(18:0/22:5) over PC(18:0/20:5) and PC(16:0/22:5) over PC(16:0/20:5),with the latter 

marked *.  The box plots represent the values for mean, standard deviation and spread for n = 4 or 5 per group.   

 

 

Supplementary Materials 
 

1. Supplementary information file S1.  Lipid traffic Analysis v2.3 (R code for conducting Lipid Traffic 

analysis.) 

2. Supplementary information file S2.  Data files of lipid abundance for running of the LTA used in the 

present study 

3. Supplementary information file S3.  Switch Analysis from the LTA 
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