mirror of
https://gitlab.com/upRootNutrition/obsidian.git
synced 2025-06-16 08:05:12 -05:00
feat: reorganized hyperblog and added vitamin D paper
This commit is contained in:
parent
0fe545c254
commit
e22bd788fe
167 changed files with 235 additions and 98 deletions
52
🛡️ Debate/Opponents/Rakhi Sawant.md
Executable file
52
🛡️ Debate/Opponents/Rakhi Sawant.md
Executable file
|
@ -0,0 +1,52 @@
|
|||
### Argument for Eating Animals
|
||||
|
||||
| <font color="CC6600">**Definiendum**</font> | <font color="CC6600">**Definiens**</font> |
|
||||
|:-------------------------------------------:|:------------------------------------------------ |
|
||||
| <font color="CC6600">**P**</font> | it is immoral to kill someone (x) |
|
||||
| <font color="CC6600">**Q**</font> | someone (x) values their life |
|
||||
| <font color="CC6600">**R**</font> | someone (x) has the capacity to value their life |
|
||||
| <font color="CC6600">**a**</font> | a given animal |
|
||||
|
||||
<div style="text-align: center">
|
||||
<font color="CC6600">
|
||||
<b>P1)</b></font> For all things, it is immoral to kill someone if, and only if, someone values their life or someone has the capacity to value their life.
|
||||
<br />
|
||||
<font color="CC6600">
|
||||
<b>(∀x(Px↔(Qx∨Rx)))</b>
|
||||
<br />
|
||||
<b>P2)</b></font> A given animal do not value their life.
|
||||
<br />
|
||||
<font color="CC6600">
|
||||
<b>(¬Qa)</b>
|
||||
<br />
|
||||
<b>P3)</b></font> A given animal does not have the capacity to value their life.
|
||||
<br />
|
||||
<font color="CC6600">
|
||||
<b>(¬Ra)</b>
|
||||
<br />
|
||||
<b>C)</b></font> Therefore, it is not immoral to kill a given animal.
|
||||
<br />
|
||||
<font color="CC6600">
|
||||
<b>(∴¬Pa)</b>
|
||||
<br />
|
||||
<br />
|
||||
</font>
|
||||
</div>
|
||||
|
||||
[Proof Tree](https://www.umsu.de/trees/#(~6x(Px~4(Qx~2Rx))),(~3Qa),(~3Ra)|=(~3Pa))
|
||||
|
||||
## Analysis
|
||||
|
||||
1. On what modality is it impossible for animals to value their lives?
|
||||
- an adjective
|
||||
2. What is the contradiction on that modality?
|
||||
- a proposition in conjunction with its negation
|
||||
3. Can you argue to that contradiction?
|
||||
- an argument with premises and a conclusion
|
||||
|
||||
---
|
||||
|
||||
# Hashtags
|
||||
|
||||
#debate
|
||||
#debate_opponents
|
Loading…
Add table
Add a link
Reference in a new issue